Three-directional contact force model for the ball spinning of a thin-walled tube

Author(s):  
Chun-jiang Zhao ◽  
Meng-ying Su ◽  
Zheng-yi Jiang ◽  
Jiang Lian-yun ◽  
Xiaorong Yang ◽  
...  

This paper provides a computational model for calculating three-directional ball spinning force in accordance with the theory of space analytic geometry. The contact boundary equation of the ball and tube is obtained. By projection, the two-dimensional curve in each coordinate plane is acquired. The projected area of the contact zone in the coordinate plane is calculated through the curve integral. It is assumed that the average pressure of the forming region is nearly equal to that when the steel ball is pressed into the tube. Hence, the unit pressure of the deformation zone is obtained. Then, the spinning component force and total spinning force are calculated. Using a Tu1 thin-walled tube of oxygen-free copper as experimental object, a ball spinning experiment is conducted, the axial spinning components force are tested and the ball spinning force calculation model is verified. Based on deformation rate, backward sliding accumulation and extension and frictional heating, the factors influencing calculation error are analysed at the end of this paper.

2010 ◽  
Vol 97-101 ◽  
pp. 111-115 ◽  
Author(s):  
Yan Qiu Zhang ◽  
Shu Yong Jiang ◽  
Yu Feng Zheng ◽  
Li Hong Zhao

Backward ball spinning is applied to manufacturing thin-walled tubular part with longitudinal inner ribs. Rigid-plastic finite element method (FEM) is used to simulate and analyze backward ball spinning of thin-walled tubular part with longitudinal inner ribs. The fields of stress and strain in the deformation zone of the spun part are obtained by means of FEM. Finite element simulation results show that the deformation zone of the spun part is caused to be in a three-dimensional compressive stress state. The deformation zone in the inner rib is under the tensile strain in the radial and axial direction, and the compressive strain in the tangential direction. The wall deformation zone beside the inner rib is under the compressive strain in the radial direction, and the tensile strain in the axial and tangential direction. The three spinning force components all increase with the increase of the stroke of the ball. Furthermore, of all the three spinning force components, the radial force component is greater than the other two force components, and the tangential force component is minimum.


2011 ◽  
Vol 189-193 ◽  
pp. 2742-2745 ◽  
Author(s):  
Yong Hua Li ◽  
Tao Fan ◽  
Ning Zhang

Ball spinning is an effective process to manufacture thin-walled tubular product of superalloy Inconel 718, which has been used widely in aerospace and other fields. In this literature, ball spinning process of superalloy thin-walled tube was investigated using software DEFORM. The build-up phenomenon and its influencing factors like principal axis speed, axial feed rate and wall thichness reduction were investigated using the finite element method (FEM). The experiment of ball spinning process was perfomed based on the proper technical parameters obtained by simulation. The simulated results agreed well with the experimental results.


2010 ◽  
Vol 154-155 ◽  
pp. 260-264
Author(s):  
Chun Yu He ◽  
Zhi Jie Jiao ◽  
Di Wu

The model parameters value of deformation resistance determines the prediction accuracy of rolling force model during the plate rolling. According to the influencing factors analysis of rolling force calculation error, the genetic algorithm was introduced into the self-learning method of deformation resistance, and searches the optimal value of deformation resistance on the basic of space exploration and optimization ability of genetic algorithm. The decision variable selection, the coding and decoding, the fitness evaluation and the terminal conditions process were implemented during development process of self-learning system. The results show that the optimization speed and accuracy can meet production requirement.


Alloy Digest ◽  
1994 ◽  
Vol 43 (8) ◽  

Abstract NICROBRAZ 50 is a low-melting, free-flowing filter metal for honeycomb structures and thin-walled tube assemblies. It has low solubility. This datasheet provides information on composition, physical properties, and hardness. It also includes information on corrosion resistance as well as joining. Filing Code: Ni-460. Producer or source: Wall Colmonoy Corporation.


Metals ◽  
2021 ◽  
Vol 11 (8) ◽  
pp. 1221
Author(s):  
Lu Bai ◽  
Jun Liu ◽  
Ziang Wang ◽  
Shuanggui Zou

In the field of cold bending, it is necessary to use ball mandrels, especially to bend thin-walled tubes with a small radius. However, the bending process with a ball mandrel is complex and expensive, and it is easy to jam the core ball inside the tube. To solve these issues, we designed two kinds of hollow non-ball mandrel schemes with low stiffness that were suitable for the small radius bending of thin-walled tubes. We evaluated the forming quality of cold bending numerically and the influence of the hollow section length and thickness on the forming indices. Our results showed that the thickness of the hollow section has a greater influence on forming quality than the length. As the hollow section’s thickness increased, the wrinkling rate first declined by approximately 40% and then increased by above 50%. When the thickness was 11 mm in scheme 1 and 13 mm in scheme 2, the wrinkling rate reached minimum values of 1.32% and 1.50%, respectively. As the hollow section’s thickness increased, the flattening rate decreased by more than 60% and the thinning rate increased by about 40%. A multi-objective optimization of forming indices was carried out by ideal point method and grey wolf optimizer. By comparing the forming results before and after optimization, the feasibility of using the proposed hollow mandrel was proved, and the hollow mandrel scheme of standard cylinder is therefore recommended.


2021 ◽  
Vol 11 (5) ◽  
pp. 2142
Author(s):  
Trung-Kien Le ◽  
Tuan-Anh Bui

Motorbike shock absorbers made with a closed die employ a tube-forming process that is more sensitive than that of a solid billet, because the tube is usually too thin-walled to conserve material. During tube forming, defects such as folding and cracking occur due to unstable tube forming and abnormal material flow. It is therefore essential to understand the relationship between the appearance of defects and the number of forming steps to optimize technological parameters. Based on both finite element method (FEM) simulations and microstructural observations, we demonstrate the important role of the number and methodology of the forming steps on the material flow, defects, and metal fiber anisotropy of motorbike shock absorbers formed from a thin-walled tube. We find limits of the thickness and height ratios of the tube that must be held in order to avoid defects. Our study provides an important guide to workpiece and processing design that can improve the forming quality of products using tube forming.


Author(s):  
Weiye Zhang ◽  
Yanchen Li ◽  
Beibei Wang ◽  
Jingmeng Sun ◽  
Lin Lin ◽  
...  

A cellulose carbonaceous aerogel/MnO2 ultrathick electrode with a unique low curvature, porous carbon thin-walled tube array structure was obtained from natural wood using a simple top-down approach.


2021 ◽  
Vol 72 ◽  
pp. 215-226
Author(s):  
Cheng Cheng ◽  
Hao Chen ◽  
Jiaxin Guo ◽  
Xunzhong Guo ◽  
Yuanji Shi

Sign in / Sign up

Export Citation Format

Share Document