Effect of elastic rubber mats on the reduction of vibration and noise in high-speed elevated railway systems

Author(s):  
Caiyou Zhao ◽  
Wang Ping

In the development of a high-speed railway system, controlling the vibration and noise caused by the system plays an important issue, since the vibration and noise have an influence on the surrounding environment. This study describes the field experiment conducted in September 2015 on the Chengdu–Dujiangyan high-speed railway system where elastic rubber mats – the only countermeasure that is currently applied to reduce vibration and noise in high-speed elevated railway systems in China – were installed in September 2010. The effects of mats under the tracks on noise and vibration were evaluated and analyzed systematically compared to the tracks without mats in the following three aspects: vertical wheel–rail forces; vibration characteristics of the track system, bridge, and ground in combination with the environmental noise characteristics in several frequency domains; and the ride comfort and the interior noise of the vehicle. The results indicate that mats have a negligible effect on the vertical wheel–rail forces, ride comfort, and the interior noise of the vehicle. However, even though they significantly reduce the vibration of the base slab, bridge, and the ground below the mats, vibration of the rails and track slabs above the mats is increased, especially at low frequencies. Mats can also effectively reduce the bridge-borne noise but have little influence on the far-field noise. Furthermore, their control effect on environmental noise and vibration was evaluated in September 2010 and September 2015, showing that mats could effectively minimize the environmental vibration and bridge-borne noise after five years of practical operation, although their control effect declined as their stiffness increased.

2020 ◽  
Vol 139 ◽  
pp. 106289
Author(s):  
Lizhong Jiang ◽  
Jian Yu ◽  
Wangbao Zhou ◽  
Wangji Yan ◽  
Zhipeng Lai ◽  
...  

Author(s):  
Jie-Ling Xiao ◽  
Pu Jing ◽  
Si-Xin Yu ◽  
Ping Wang

Polyurethane-reinforced ballasted track (PRBT) can improve the integrity of ballasted track structures and satisfy the high-stability requirements of high-speed railways. In this study, the quality evolution law of PRBT structures after being launched into train service was analyzed, and a reference for structural optimization and maintenance operation was provided. The track geometric state of the PRBT test section of a high-speed railway was measured and monitored for nearly one year after it was launched into operation, and the ballastless track of the adjacent section was selected as a reference. The geometric states of the tracks were evaluated and compared using various parameters, including sliding standard deviation, average standard deviation, and track irregularity spectrum density. Results show that the track quality indexes of the test section, which were in operation for nearly one year, were slightly over the limit. Moreover, the fastener can be finely adjusted for the high-value index sections to further improve the ride comfort. The application effect of PRBT in the subgrade fracture zone was good, which could satisfy the requirements of high-quality transportation as well as the normal operation and maintenance of high-speed railway.


2019 ◽  
Vol 1 (1) ◽  
pp. 22-36 ◽  
Author(s):  
Chun-fang Lu

Abstract: China’s high-speed railway network has already achieved speeds of 350 km/h; however, this could be further increased to 400 km/h. After considering the development status and technical level of the high-speed railway system in China, this study indicates that there are four key technologies involved in improving its operational speed: the track, the electrical moving unit, the control system and the traction power supply. Through an experimental analysis, an evaluation index for the high-speed railway is then constructed based on four aspects: safety, comfort, intelligence and environmental protection. Using this system, the rationality of the high-speed railway speed-improvement plan can be scientifically evaluated. The results are of practical significance to the Chinese railway administration, as they can be used to formulate specific plans to increase rail speeds, and therefore promote the rapid development of the high-speed railway network in China.


2018 ◽  
Vol 15 (3) ◽  
pp. 172988141877394 ◽  
Author(s):  
Ye Han ◽  
Zhigang Liu ◽  
DJ Lee ◽  
Wenqiang Liu ◽  
Junwen Chen ◽  
...  

Maintenance of catenary system is a crucial task for the safe operation of high-speed railway systems. Catenary system malfunction could interrupt railway service and threaten public safety. This article presents a computer vision algorithm that is developed to automatically detect the defective rod-insulators in a catenary system to ensure reliable power transmission. Two key challenges in building such a robust inspection system are addressed in this work, the detection of the insulators in the catenary image and the detection of possible defects. A two-step insulator detection method is implemented to detect insulators with different inclination angles in the image. The sub-images containing cantilevers and rods are first extracted from the catenary image. Then, the insulators are detected in the sub-image using deformable part models. A local intensity period estimation algorithm is designed specifically for insulator defect detection. Experimental results show that the proposed method is able to automatically and reliably detect insulator defects including the breakage of the ceramic discs and the foreign objects clamped between two ceramic discs. The performance of this visual inspection method meets the strict requirements for catenary system maintenance.


Sign in / Sign up

Export Citation Format

Share Document