Prediction of rail defect development using parametric bootstrapping modified Weibull equations

Author(s):  
John J Cronin ◽  
Allan M Zarembski ◽  
Joseph W Palese

The railroad industry has historically used the 2-Parameter Weibull equation to determine the rate of rail fatigue defect occurrences and to forecast the fatigue life of railroad rail. However, the 2-Parameter Weibull equation has significant limitations to include inability to analyze segments of track with limited number of rail defects. These limitations are addressed through modification of the traditional 2-Parameter Weibull equation with a novel approach developed from Parametric Bootstrapping. The result is a Parametric Bootstrapping modified Weibull (PBW) forecasting approach. This methodology is applied to rail segments with insufficient numbers of defects to allow for appropriate defect forecasting analysis. Thus, the PBW method provides reasonable estimates of the rate of defects for track segments that have little or no prior defect history. This approach allows for more track to be analyzed and forecasts the probability of rail defect occurrence as a function of key parameters such as cumulative traffic over the rail. A validation of the proposed methodology was performed. Comparison of the output results of over 300,000 track segments with over 200,000 rail defects showed a major improvement in percentage of segments with reasonable Weibull parameters (alpha and beta). This percentage increased from 11% of segments using traditional Weibull analysis to 77% of segments using Parametric Bootstrap modified Weibull approach. These results show that the PBW Analysis approach introduced here offers a more accurate and effective approach to determining the probability of developing future rail defects. This provides a benefit to railroads in planning maintenance of their expensive rail assets.

Author(s):  
Yasuhiro Saito ◽  
Tadashi Dohi

Non-Homogeneous Gamma Process (NHGP) is characterized by an arbitrary trend function and a gamma renewal distribution. In this paper, we estimate the confidence intervals of model parameters of NHGP via two parametric bootstrap methods: simulation-based approach and re-sampling-based approach. For each bootstrap method, we apply three methods to construct the confidence intervals. Through simulation experiments, we investigate each parametric bootstrapping and each construction method of confidence intervals in terms of the estimation accuracy. Finally, we find the best combination to estimate the model parameters in trend function and gamma renewal distribution in NHGP.


2020 ◽  
Vol 0 (0) ◽  
Author(s):  
F. Zertuche ◽  
A. Meza-Peñaloza

AbstractFor more than 50 years the Mean Measure of Divergence (MMD) has been one of the most prominent tools used in anthropology for the study of non-metric traits. However, one of the problems, in anthropology including palaeoanthropology (more often there), is the lack of big enough samples or the existence of samples without sufficiently measured traits. Since 1969, with the advent of bootstrapping techniques, this issue has been tackled successfully in many different ways. Here, we present a parametric bootstrap technique based on the fact that the transformed θ, obtained from the Anscombe transformation to stabilize the variance, nearly follows a normal distribution with standard deviation $\sigma = 1 / \sqrt{N + 1/2}$, where N is the size of the measured trait. When the probabilistic distribution is known, parametric procedures offer more powerful results than non-parametric ones. We profit from knowing the probabilistic distribution of θ to develop a parametric bootstrapping method. We explain it carefully with mathematical support. We give examples, both with artificial data and with real ones. Our results show that this parametric bootstrap procedure is a powerful tool to study samples with scarcity of data.


2018 ◽  
Vol 12 (1) ◽  
pp. 3461-3471 ◽  
Author(s):  
C. V. Sia ◽  
◽  
L. Fernando ◽  
A. Joseph ◽  
S. N. Chua ◽  
...  

Author(s):  
Kunio Takezawa

This paper proposes a method for constructing a predictive estimator for logistic regression. We make a provisional assumption that the predictive estimator is given by multiplying the maximum likelihood estimators by constants, which are estimated using a parametric bootstrap method. The relative merits of the maximum likelihood estimator and the predictive estimator produced by this method are determined by cross-validation. The results show that the predictiveestimators derived by this method lead to a smaller deviance than that obtained by the maximum likelihood estimator in many instances.


2020 ◽  
Author(s):  
Jeffrey N Chiang ◽  
Ulzee An ◽  
Misagh Kordi ◽  
Brandon Jew ◽  
Clifford Kravit ◽  
...  

During the initial wave of the COVID-19 pandemic in the United States, hospitals took drastic action to ensure sufficient capacity, including canceling or postponing elective procedures, expanding the number of available intensive care beds and ventilators, and creating regional overflow hospital capacity. However, in most locations the actual number of patients did not reach the projected surge leaving available, unused hospital capacity. As a result, patients may have delayed needed care and hospitals lost substantial revenue. These initial recommendations were made based on observations and worst-case epidemiological projections, which generally assume a fixed proportion of COVID-19 patients will require hospitalization and advanced resources. This assumption has led to an overestimate of resource demand as clinical protocols improve and testing becomes more widely available throughout the course of the pandemic. Here, we present a parametric bootstrap model for forecasting the resource demands of incoming patients in the near term, and apply it to the current pandemic. We validate our approach using observed cases at UCLA Health and simulate the effect of elective procedure cancellation against worst-case pandemic scenarios. Using our approach, we show that it is unnecessary to cancel elective procedures unless the actual capacity of COVID-19 patients approaches the hospital maximum capacity. Instead, we propose a strategy of balancing the resource demands of elective procedures against projected patients by revisiting the projections regularly to maintain operating efficiency. This strategy has been in place at UCLA Health since mid-April.


2019 ◽  
Vol 476 (24) ◽  
pp. 3705-3719 ◽  
Author(s):  
Avani Vyas ◽  
Umamaheswar Duvvuri ◽  
Kirill Kiselyov

Platinum-containing drugs such as cisplatin and carboplatin are routinely used for the treatment of many solid tumors including squamous cell carcinoma of the head and neck (SCCHN). However, SCCHN resistance to platinum compounds is well documented. The resistance to platinum has been linked to the activity of divalent transporter ATP7B, which pumps platinum from the cytoplasm into lysosomes, decreasing its concentration in the cytoplasm. Several cancer models show increased expression of ATP7B; however, the reason for such an increase is not known. Here we show a strong positive correlation between mRNA levels of TMEM16A and ATP7B in human SCCHN tumors. TMEM16A overexpression and depletion in SCCHN cell lines caused parallel changes in the ATP7B mRNA levels. The ATP7B increase in TMEM16A-overexpressing cells was reversed by suppression of NADPH oxidase 2 (NOX2), by the antioxidant N-Acetyl-Cysteine (NAC) and by copper chelation using cuprizone and bathocuproine sulphonate (BCS). Pretreatment with either chelator significantly increased cisplatin's sensitivity, particularly in the context of TMEM16A overexpression. We propose that increased oxidative stress in TMEM16A-overexpressing cells liberates the chelated copper in the cytoplasm, leading to the transcriptional activation of ATP7B expression. This, in turn, decreases the efficacy of platinum compounds by promoting their vesicular sequestration. We think that such a new explanation of the mechanism of SCCHN tumors’ platinum resistance identifies novel approach to treating these tumors.


2020 ◽  
Vol 51 (3) ◽  
pp. 544-560 ◽  
Author(s):  
Kimberly A. Murphy ◽  
Emily A. Diehm

Purpose Morphological interventions promote gains in morphological knowledge and in other oral and written language skills (e.g., phonological awareness, vocabulary, reading, and spelling), yet we have a limited understanding of critical intervention features. In this clinical focus article, we describe a relatively novel approach to teaching morphology that considers its role as the key organizing principle of English orthography. We also present a clinical example of such an intervention delivered during a summer camp at a university speech and hearing clinic. Method Graduate speech-language pathology students provided a 6-week morphology-focused orthographic intervention to children in first through fourth grade ( n = 10) who demonstrated word-level reading and spelling difficulties. The intervention focused children's attention on morphological families, teaching how morphology is interrelated with phonology and etymology in English orthography. Results Comparing pre- and posttest scores, children demonstrated improvement in reading and/or spelling abilities, with the largest gains observed in spelling affixes within polymorphemic words. Children and their caregivers reacted positively to the intervention. Therefore, data from the camp offer preliminary support for teaching morphology within the context of written words, and the intervention appears to be a feasible approach for simultaneously increasing morphological knowledge, reading, and spelling. Conclusion Children with word-level reading and spelling difficulties may benefit from a morphology-focused orthographic intervention, such as the one described here. Research on the approach is warranted, and clinicians are encouraged to explore its possible effectiveness in their practice. Supplemental Material https://doi.org/10.23641/asha.12290687


Sign in / Sign up

Export Citation Format

Share Document