Fault-tolerant control for multiple networked spacecraft under actuator saturation

Author(s):  
Ning Dong ◽  
Binbin Yuan ◽  
Pingli Lu

In this paper, fault-tolerant attitude tracking control problem is investigated for multiple spacecraft formation flying system with external disturbance, actuator saturation, and faults. A quaternion-based adaptive fault-tolerant control law is proposed based on input normalized neural network. The desired nonlinear smooth function is approximated by using input normalized neural network with an adaptive learning algorithm, and no prior knowledge about spacecraft dynamics is required. Meanwhile, in order to guarantee that the output of input normalized neural network used in the controller is bounded by the corresponding bound of the approximated unknown function, a modified adaptive law is designed to revise the sliding mode manifold. Moreover, the stability of system can be guaranteed by Lyapunov theory. Finally, the validity of the proposed control algorithm is verified through numerical simulations.

2021 ◽  
Vol 2021 ◽  
pp. 1-15
Author(s):  
Davood Allahverdy ◽  
Ahmad Fakharian ◽  
Mohammad Bagher Menhaj

In this paper, a fault-tolerant control system based on back-stepping integral sliding mode controller (BISMC) is designed and analyzed for both nonlinear translational and rotational subsystems of the quadrotor unmanned aerial vehicles (UAVs). The novelty of this paper is about combination of a classic controller with a repetitive algorithm to reduce the response time to actuator faults and have better tracking performance. The actuator fault is defined based on the loss of effectiveness and bias fault. Next, the iterative learning control algorithm (ILCA) is used to compensate for the unknown fault input according to previous recorded experiences. In the normal condition (without actuators fault), BISMC can force the actual trajectories toward the desired commands and reduce chattering about control signals, and in the presence of the actuators fault or external disturbances, the mentioned learning algorithm can incline the accuracy of the tracking performance and compensate for the occurred error. The Lyapunov theory illustrates that the proposed control strategy can stabilize the system despite the actuators’ fault and external disturbances. The simulation results show the effectiveness of the proposed scheme in comparison with another method.


Author(s):  
Shiqian Liu ◽  
James F Whidborne

This paper presents the fault tolerant control (FTC) of an unmanned airship with multiple vectored thrusters in the presence of model parameter uncertainties and unknown wind disturbances. A fault tolerant control based on constrained adaptive backstepping (CAB) approach, combined with a radial basis function neural network (RBFNN) approximation, is proposed for the airship with thruster faults. A wind observer is designed to estimate the bounded wind disturbances. An adaptive fault estimator is proposed to estimate the unknown actuator faults. A weighted pseudo inverse based control allocation is incorporated to reconstruct and optimize the practical control inputs of the failed airship under constraints of actuator saturation. Rigorous stability analysis shows that trajectory tracking errors of the airship position and attitude converge to the desired set through Lyapunov theory. Numerical simulations demonstrate the fault tolerant trajectory tracking capability of the proposed NN-CAB controller under the actuator faults, even in the presence of aerodynamic coefficient uncertainties, and unknown wind disturbances.


2019 ◽  
Vol 41 (13) ◽  
pp. 3836-3846 ◽  
Author(s):  
Chunsheng Liu ◽  
Ke Lu ◽  
Jingliang Sun ◽  
Jiao Dai

This paper proposes a sliding-mode control (SMC) scheme for a class of linear parameter varying (LPV) systems subject to a loss of control effectiveness and external disturbance. The LPV model is transformed into the non-LPV model representation. The updating law for unknown time-varying fault and the disturbance estimator are designed. The novel sliding-mode fault tolerant control (FTC) law is presented by using estimated fault and estimated disturbance to compensate the effects of faults in both cases: the known and the partial known system matrices. The stability analysis of closed-loop system is performed on the Lyapunov theory. The main advantage of the proposed method is to circumvent solving on-line parameter-dependent nonlinear matrix inequalities, also to adapt to the changes of unknown parameter. The feasibility of the approach is illustrated by means of the simulation examples.


Author(s):  
Jun Zhou ◽  
Jing Chang ◽  
Zongyi Guo

The paper describes the design of a fault-tolerant control scheme for an uncertain model of a hypersonic reentry vehicle subject to actuator faults. In order to improve superior transient performances for state tracking, the proposed method relies on a back-stepping sliding mode controller combined with an adaptive disturbance observer and a reference vector generator. This structure allows for a faster response and reduces the overshoots compared to linear conventional disturbance observers based sliding mode controller. Robust stability and performance guarantees of the overall closed-loop system are obtained using Lyapunov theory. Finally, numerical simulations results illustrate the effectiveness of the proposed technique.


Author(s):  
Salman Ijaz ◽  
Mirza T Hamayun ◽  
Lin Yan ◽  
Cun Shi

The research about the dissimilar redundant actuation system has indicated the potential fault-tolerant capability in modern aircraft. This paper proposed a new design methodology to achieve fault-tolerant control of an aircraft equipped with dissimilar actuators and is suffered from vertical tail damage. The proposed design is based on the concept of online control allocation to redistribute the control signals among healthy actuators and integral sliding mode controller is designed to achieve the closed-loop stability in the presence of both component and actuator faults. To cope with severe damage condition, the aircraft is equipped with dissimilar actuators (hydraulic and electrohydraulic actuators). In this paper, the performance degradation due to slower dynamics of electrohydraulic actuator is taken in account. Therefore, the feed-forward compensator is designed for electrohydraulic actuator based on fractional-order control strategy. In case of failure of hydraulic actuator subject to severe damage of vertical tail, an active switching mechanism is developed based on the information of fault estimation unit. Additionally, a severe type of actuator failure so-called actuator saturation or actuator lock in place is also taken into account in this work. The proposed strategy is compared with the existing control strategies in the literature. Simulation results indicate the dominant performance of the proposed scheme. Moreover, the proposed controller is found robust with a certain level of mismatch between the actuator effectiveness level and its estimate.


2019 ◽  
Vol 2019 ◽  
pp. 1-13 ◽  
Author(s):  
Liang Zheng ◽  
Xuelian Dong ◽  
Qian Luo ◽  
Menglan Zeng ◽  
Xinping Yang ◽  
...  

In this paper, an adaptive sliding mode fault tolerant control (ASMFTC) approach is proposed for a class of nonlinear systems with actuator fault, uncertainty, and external disturbance. Specifically, first, a novel observer is proposed to estimate the state, actuator fault, and external disturbance. Then, by utilising the observed information, a novel output sliding mode observer is constructed. In the control method, an adaptive law and two compensators are designed to attenuate the unknown estimation errors, actuator fault, and disturbance. Furthermore, the reaching ability of the sliding motion is analysed and the H-infinite performance is introduced to ensure the robustness of the system. Finally, a flexible single joint manipulator system and a two-cart system are used to verify the effectiveness of the proposed method.


2019 ◽  
Vol 9 (19) ◽  
pp. 4010 ◽  
Author(s):  
Ngoc Phi Nguyen ◽  
Sung Kyung Hong

Fault-tolerant control is becoming an interesting topic because of its reliability and safety. This paper reports an active fault-tolerant control method for a quadcopter unmanned aerial vehicle (UAV) to handle actuator faults, disturbances, and input constraints. A robust fault diagnosis based on the H ∞ scheme was designed to estimate the magnitude of a time-varying fault in the presence of disturbances with unknown upper bounds. Once the fault estimation was complete, a fault-tolerant control scheme was proposed for the attitude system, using adaptive sliding mode backstepping control to accommodate the actuator faults, despite actuator saturation limitation and disturbances. The Lyapunov theory was applied to prove the robustness and stability of the closed-loop system under faulty operation. Simulation results show the effectiveness of the fault diagnosis scheme and proposed controller for handling actuator faults.


Author(s):  
Haiyang Zhu ◽  
Yansheng Wu ◽  
Yi Rong ◽  
Xudong Qin ◽  
Yu Chen

To tolerate the limited faults such as thrust decline or actuator jamming of launch vehicles, an adaptive fault-tolerant control method based on radial basis function neural network (RBFNN) is proposed in this paper. The method is based on a limited faults dynamics model, and the baseline controller is designed based on the pole placement, using RBFNN to online identify and compensate the fault parameters and uncertain disturbances in the model. Then an adaptive fault-tolerant control law is designed based on Lyapunov theory. The simulation results show that the proposed adaptive control method can effectively ensure the attitude stability as well as control accuracy under the limited faults of launch vehicles, compared with the traditional PD control method.


2020 ◽  
Vol 10 (10) ◽  
pp. 3503 ◽  
Author(s):  
Yu-Hsuan Lien ◽  
Chao-Chung Peng ◽  
Yi-Hsuan Chen

This paper aims to propose a strategy for the flight control of quad-rotors under single rotor failure conditions. The proposed control strategy consists of two stages—fault detection (FD) and fault tolerant control (FTC). A dual observer-based strategy for FD and fault estimation is developed. With the combination of the results from both observers, the decision making in whether a fault actually happened or the observed anomaly was caused by an external disturbance could be distinguished. Following the FD result, a control strategy for normal flight, as well as the abnormal one, is presented. The FTC considers a real-time coordinate transformation scheme to manipulate the target angles for the quad-rotor to follow a prescribed trajectory. When a rotor fault happens, it is going to be detected by the dual observers and then the FTC is activated to stabilize the system such that the trajectory following task can still be fulfilled. Furthermore, in order to achieve robust flight in the presence of external wind perturbation, the sliding mode control (SMC) theory is further integrated. Simulations illustrate the effectiveness and feasibility of the proposed method.


Sign in / Sign up

Export Citation Format

Share Document