Adaptive fault-tolerant attitude control for reentry vehicle involving actuator saturation

Author(s):  
Ming-Zhou Gao ◽  
Jian-Yong Yao

Many control methods are used in attitude control of reentry vehicle, such as optimal control and classical control methods. However, those control laws may not work effectively if the attitude system is confronted with actuator faults and saturation. This paper proposes an adaptive fault tolerant attitude control method for the reentry vehicle's attitude control system, by combining the radial basis function network technology with adaptive fault tolerant control method. We simultaneously considered actuator fault, actuator saturation, time varying unknown disturbances and uncertainties when designing the control method. First, we set up the reentry attitude dynamic model concerning actuator fault; second, a finite-time H∞ adaptive fault-tolerant attitude controller is introduced to deal with the actuator fault, saturation, unknown disturbances and uncertainties of the reentry vehicle system; we proved the stability of our proposed adaptive attitude fault-tolerant controller through the Lyapunov function and the linear matrix inequality method. Finally, the effectiveness of such adaptive fault-tolerant control method has been identified by numerous simulation results. The simulation results show that our proposed method can not only effectively deal with actuator fault in the attitude control system, but also has very good robustness for actuator saturation, time varying unknown disturbances and uncertainties.

2015 ◽  
Vol 2015 ◽  
pp. 1-19 ◽  
Author(s):  
Xuzhong Wu ◽  
Shengjing Tang ◽  
Jie Guo ◽  
Yao Zhang

This paper presents the finite-time attitude control problem for reentry vehicle with redundant actuators in consideration of planet uncertainties and external disturbances. Firstly, feedback linearization technique is used to cancel the nonlinearities of equations of motion to construct a basic mode for attitude controller. Secondly, two kinds of time-varying sliding mode control methods with disturbance observer are integrated with the basic mode in order to enhance the control performance and system robustness. One method is designed based on boundary layer technique and the other is a novel second-order sliding model control method. The finite-time stability analyses of both resultant closed-loop systems are carried out. Furthermore, after attitude controller produces the torque commands, an optimization control allocation approach is introduced to allocate them into aerodynamic surface deflections and on-off reaction control system thrusts. Finally, the numerical simulation results demonstrate that both of the time-varying sliding mode control methods are robust to uncertainties and disturbances without chattering phenomenon. Moreover, the proposed second-order sliding mode control method possesses better control accuracy.


Author(s):  
Gao Ming-Zhou ◽  
Chen Xin-Yi ◽  
Han Rong ◽  
Yao Jian-Yong

To suppress airfoil flutter, a lot of control methods have been proposed, such as classical control methods and optimal control methods. However, these methods did not consider the influence of actuator faults and control delay. This paper proposes a new finite-time H∞ adaptive fault-tolerant flutter controller by radial basis function neural network technology and adaptive fault-tolerant control method, taking into account actuator faults, control delay, modeling uncertainties, and external disturbances. The theoretic section of this paper is about airfoil flutter dynamic modeling and adaptive fault-tolerant controller design. Lyapunov function and linear matrix inequality are employed to prove the stability of the proposed control method of this paper. The numeral simulation section further proves the effectiveness and robustness of the proposed control algorithm of this paper.


2019 ◽  
Vol 2019 ◽  
pp. 1-13 ◽  
Author(s):  
Liang Zheng ◽  
Xuelian Dong ◽  
Qian Luo ◽  
Menglan Zeng ◽  
Xinping Yang ◽  
...  

In this paper, an adaptive sliding mode fault tolerant control (ASMFTC) approach is proposed for a class of nonlinear systems with actuator fault, uncertainty, and external disturbance. Specifically, first, a novel observer is proposed to estimate the state, actuator fault, and external disturbance. Then, by utilising the observed information, a novel output sliding mode observer is constructed. In the control method, an adaptive law and two compensators are designed to attenuate the unknown estimation errors, actuator fault, and disturbance. Furthermore, the reaching ability of the sliding motion is analysed and the H-infinite performance is introduced to ensure the robustness of the system. Finally, a flexible single joint manipulator system and a two-cart system are used to verify the effectiveness of the proposed method.


2014 ◽  
Vol 494-495 ◽  
pp. 1206-1211 ◽  
Author(s):  
Tong Yue Gao ◽  
Dong Dong Wang ◽  
Fei Tao ◽  
Hai Lang Ge

Recently, the UAV has become the research focus at home and abroad. this paper puts forward a unconventional type: double ducted tilting Subminiature UAV system (SUAV) , and carries out the research of the control system for this SUAV. Since SUAV flight attitude control process has strong time-varying characteristics, and there are random disturbances, the conventional control methods with unchanged parameters are often unworkable. An on-line adaptive ADRC control system is designed in this paper. An on-line adaptive ADRC system implements a simultaneous on-line tuning of ADRC rules and output scale of ADRC control system. The flight experiment showed that the proposed adaptive ADRC system provides quicker response, smaller overshoot, higher precision, robustness and adaptive ability. It satisfies the needs of autonomous flight.


2013 ◽  
Vol 462-463 ◽  
pp. 809-814
Author(s):  
Fei Zhao ◽  
Fan Li ◽  
Jian Hui Zhao

A Multiple Independently Targeted Reentry Vehicle (MIRV) is a ballistic missile payload containing several warheads each capable of hitting one of a group of targets. In the process of missile flight control, the release of warheads brings about coupling to the missile attitude control system which will lower the flight stability. In order to solve this problem, a missile attitude controller, which combined the α-order integral inverse system with internal model principle, was presented. Firstly, determine the Post Boost Vehicle (PBV) attitude dynamics model. Then, combine the linearization of attitude dynamics equation with feed-forward decoupling method to implement the attitude decoupling. Finally, a two-degree of freedom (TOF) multivariable internal model controller was set up to optimize the control system performance. Simulation results show that the coupling of attitude control system has been eliminated. Compared with the original system, the internal model controller provides the control system better input-tracking performance, robust stability and interference suppression capacity.


2017 ◽  
Vol 11 (8) ◽  
pp. 1112-1123 ◽  
Author(s):  
Palanisamy Selvaraj ◽  
Boomipalagan Kaviarasan ◽  
Rathinasamy Sakthivel ◽  
Hamid Reza Karimi

Sign in / Sign up

Export Citation Format

Share Document