scholarly journals Contribution of passive actions to the lower limb joint moments and powers during gait: A comparison of models

Author(s):  
Xavier Gasparutto ◽  
Eric Jacquelin ◽  
Raphael Dumas

The lower limb passive actions representing the actions of all the passive periarticular structures have been shown to have a significant contribution to the power generation and absorption during gait. However, the respective magnitude of its different components was not established, although models of ligament moment were implemented in some musculoskeletal models. These ligament moments have shown to have an influence on the musculo-tendon forces and contact forces but the models used were never specifically evaluated, that is, compared to the passive and net joint moments. Two models of passive joint moments and three models of ligament moments were selected from the literature. Ten subjects (23–29 years old, 79.8 ± 9.5 kg, 1.85 ± 0.06 m) participated in the study. Each subject performed three gait cycles in a gait laboratory to acquire the kinematics and ground reaction forces and to compute the ligament, passive and net moments of the right lower limb joints. The contributions of the passive joint moments to the net joint moments were in accordance with the literature, although time shifts appeared for peaks in the hip and knee powers. Two of the models of ligament moments seemed, in fact, to represent the passive joint moments as their contributions were very similar while the third model of ligament moments seemed to represent only penalty-based joint limits. As a conclusion, this study showed that the models of ligament moments existing in the literature do not seem reliable. This study also demonstrated that the use of non-subject-specific models of the passive joint moments could be a valid approach for healthy subjects.

PeerJ ◽  
2018 ◽  
Vol 6 ◽  
pp. e5517 ◽  
Author(s):  
Dong Sun ◽  
Gusztáv Fekete ◽  
Qichang Mei ◽  
Yaodong Gu

Background Normative foot kinematic and kinetic data with different walking speeds will benefit rehabilitation programs and improving gait performance. The purpose of this study was to analyze foot kinematics and kinetics differences between slow walking (SW), normal walking (NW) and fast walking (FW) of healthy subjects. Methods A total of 10 healthy male subjects participated in this study; they were asked to carry out walks at a self-selected speed. After measuring and averaging the results of NW, the subjects were asked to perform a 25% slower and 25% faster walk, respectively. Temporal-spatial parameters, kinematics of the tibia (TB), hindfoot (HF), forefoot (FF) and hallux (HX), and ground reaction forces (GRFs) were recorded while the subjects walked at averaged speeds of 1.01 m/s (SW), 1.34 m/s (NW), and 1.68 m/s (FW). Results Hindfoot relative to tibia (HF/TB) and forefoot relative to hindfoot (FF/HF) dorsiflexion (DF) increased in FW, while hallux relative to forefoot (HX/FF) DF decreased. Increased peak eversion (EV) and peak external rotation (ER) in HF/TB were observed in FW with decreased peak supination (SP) in FF/HF. GRFs were increased significantly with walking speed. The peak values of the knee and ankle moments in the sagittal and frontal planes significantly increased during FW compared with SW and NW. Discussion Limited HF/TB and FF/HF motion of SW was likely compensated for increased HX/FF DF. Although small angle variation in HF/TB EV and FF/HF SP during FW may have profound effects for foot kinetics. Higher HF/TB ER contributed to the FF push-off the ground while the center of mass (COM) progresses forward in FW, therefore accompanied by higher FF/HF abduction in FW. Increased peak vertical GRF in FW may affected by decreased stance duration time, the biomechanical mechanism maybe the change in vertical COM height and increase leg stiffness. Walking speed changes accompanied with modulated sagittal plane ankle moments to alter the braking GRF during loading response. The findings of foot kinematics, GRFs, and lower limb joint moments among healthy males may set a reference to distinguish abnormal and pathological gait patterns.


2014 ◽  
Vol 30 (1) ◽  
pp. 179-183 ◽  
Author(s):  
Jonathon S. Schofield ◽  
Eric Parent ◽  
Justin Lewicke ◽  
Jason P. Carey ◽  
Marwan El-Rich ◽  
...  

Sit-to-stand transfer is a common prerequisite for many daily tasks. Literature often assumes symmetric behavior across the left and right side. Although this assumption of bilateral symmetry is prominent, few studies have validated this supposition. This pilot study uniquely quantifies peak joint moments and ground reaction forces (GRFs), using a Euclidian norm approach, to evaluate bilateral symmetry and its relation to lower limb motor-dominance during sit to stand in ten healthy males. Peak joint moments and GRFs were determined using a motion capture system and inverse dynamics. This analysis included joint moment contributions from all three body planes (sagittal, coronal, and axial) as well as vertical and shearing GRFs. A paired, one-tailedttest was used, suggesting asymmetrical joint moment development in all three lower extremity joints as well as GRFs (P< .05). Furthermore, using an unpaired two-tailedttest, asymmetry developed during these movements does not appear to be predictable by participants’ lower limb motor-dominance (P< .025). Consequently, when evaluating sit-to-stand it is suggested the effects of asymmetry be considered in the interpretation of data. The absence of a relationship between dominance and asymmetry prevents the suggestion that one side can be tested to infer behavior of the contralateral.


2004 ◽  
Vol 26 (12) ◽  
pp. 724-732 ◽  
Author(s):  
Tasuku Miyoshi ◽  
Takashi Shirota ◽  
Shin-Ichiro Yamamoto ◽  
Kimitaka Nakazawa ◽  
Masami Akai

2014 ◽  
Vol 40 (1) ◽  
pp. 67-75 ◽  
Author(s):  
David Zahradnik ◽  
Jaroslav Uchytil ◽  
Roman Farana ◽  
Daniel Jandacka

Abstract A non-contact anterior cruciate ligament (ACL) injury is both a serious and very common problem in volleyball. The aim of the study was to determine the association between stick, step-back, and run-back landings after a block and select risk factors of ACL injuries for female professional volleyball players. The research sample involved fourteen female professional volleyball players. Two force plates were used to determine ground reaction forces. Eight infrared cameras were employed to collect the kinematic data. The one-factor repeated-measures analysis of variance, where the landing type was the factor, was used for comparing the valgus moment and ground reaction force on the right lower limb. ANOVA showed that the type of landing has a main effect on the valgus moment on the right lower limb (F) = 5.96, p = 0.019df = 1.18, partial ƞ2 = 0.239 and SP = 0.693). Furthermore, it did not show a main effect on the vertical reaction force on the right lower limb ((F)=2.77, p=0.090, df=1.55, partial ƞ2= 0.128 and SP=0.448). The highest valgus moment occurred during the run-back landing. This moment, however, did not have any effect within the first 100 ms after initial contact with the ground, but rather upon the subsequent motion carried out when stepping back off the net. A comparison between a run-back landing and a step-back landing showed relevant higher values of vertical ground reaction forces during the run-back landing.


2013 ◽  
Vol 13 (01) ◽  
pp. 1350027
Author(s):  
FILIPA JOÃO ◽  
ANTÓNIO VELOSO

The purpose of this study was to estimate the ability of joint moments of force in transferring mechanical energy through all the leg segments during a cyclic hopping sequence, performed until exhaustion. The technique was applied to data from four healthy active students to characterize the relative contribution of the lower limb net joint moments of force to accelerate the ankle, knee, and hip joints. Our findings showed that the strategies used to maintain the same jumping height rely on the balance between the net joint moments to guarantee the acceleration of the joints. It seems that while the ankle and knee moments reduce their contribution to accelerate the ankle and the knee joints, the hip moments increase their participation and have an important influence in the re-arrangement of the musculoskeletal system to maintain the same mechanical output.


2019 ◽  
Vol 126 (5) ◽  
pp. 1315-1325 ◽  
Author(s):  
Andrew B. Udofa ◽  
Kenneth P. Clark ◽  
Laurence J. Ryan ◽  
Peter G. Weyand

Although running shoes alter foot-ground reaction forces, particularly during impact, how they do so is incompletely understood. Here, we hypothesized that footwear effects on running ground reaction force-time patterns can be accurately predicted from the motion of two components of the body’s mass (mb): the contacting lower-limb (m1 = 0.08mb) and the remainder (m2 = 0.92mb). Simultaneous motion and vertical ground reaction force-time data were acquired at 1,000 Hz from eight uninstructed subjects running on a force-instrumented treadmill at 4.0 and 7.0 m/s under four footwear conditions: barefoot, minimal sole, thin sole, and thick sole. Vertical ground reaction force-time patterns were generated from the two-mass model using body mass and footfall-specific measures of contact time, aerial time, and lower-limb impact deceleration. Model force-time patterns generated using the empirical inputs acquired for each footfall matched the measured patterns closely across the four footwear conditions at both protocol speeds ( r2 = 0.96 ± 0.004; root mean squared error  = 0.17 ± 0.01 body-weight units; n = 275 total footfalls). Foot landing angles (θF) were inversely related to footwear thickness; more positive or plantar-flexed landing angles coincided with longer-impact durations and force-time patterns lacking distinct rising-edge force peaks. Our results support three conclusions: 1) running ground reaction force-time patterns across footwear conditions can be accurately predicted using our two-mass, two-impulse model, 2) impact forces, regardless of foot strike mechanics, can be accurately quantified from lower-limb motion and a fixed anatomical mass (0.08mb), and 3) runners maintain similar loading rates (ΔFvertical/Δtime) across footwear conditions by altering foot strike angle to regulate the duration of impact. NEW & NOTEWORTHY Here, we validate a two-mass, two-impulse model of running vertical ground reaction forces across four footwear thickness conditions (barefoot, minimal, thin, thick). Our model allows the impact portion of the impulse to be extracted from measured total ground reaction force-time patterns using motion data from the ankle. The gait adjustments observed across footwear conditions revealed that runners maintained similar loading rates across footwear conditions by altering foot strike angles to regulate the duration of impact.


Sign in / Sign up

Export Citation Format

Share Document