Characterization of chronic liver disease based on ultrasound images using the variants of grey-level difference matrix

Author(s):  
Puja Bharti ◽  
Deepti Mittal ◽  
Rupa Ananthasivan

Chronic liver diseases are fifth leading cause of fatality in developing countries. Early diagnosis is important for timely treatment and to salvage life. Ultrasound imaging is frequently used to examine abnormalities of liver. However, ambiguity lies in visual interpretation of liver stages on ultrasound images. This difficult visualization problem can be solved by analysing extracted textural features from images. Grey-level difference matrix, a texture feature extraction method, can provide information about roughness of liver surface, sharpness of liver borders and echotexture of liver parenchyma. In this article, the behaviour of variants of grey-level difference matrix in characterizing liver stages is investigated. The texture feature sets are extracted by using variants of grey-level difference matrix based on two, three, five and seven neighbouring pixels. Thereafter, to take the advantage of complementary information from extracted feature sets, feature fusion schemes are implemented. In addition, hybrid feature selection (combination of ReliefF filter method and sequential forward selection wrapper method) is used to obtain optimal feature set in characterizing liver stages. Finally, a computer-aided system is designed with the optimal feature set to classify liver health in terms of normal, chronic liver, cirrhosis and hepatocellular carcinoma evolved over cirrhosis. In the proposed work, experiments are performed to (1) identify the best approximation of derivative (forward, central or backward); (2) analyse the performance of individual feature sets of variants of grey-level difference matrix; (3) obtain optimal feature set by exploiting the complementary information from variants of grey-level difference matrix and (4) analyse the performance of proposed method in comparison with existing feature extraction methods. These experiments are carried out on database of 754 segmented regions of interest formed by clinically acquired ultrasound images. The results show that classification accuracy of 94.5% is obtained by optimal feature set having complementary information from variants of grey-level difference matrix.

1998 ◽  
Vol 20 (2) ◽  
pp. 132-148 ◽  
Author(s):  
H.J. Huisman ◽  
J.M. Thijssen

Computer texture analysis methods use texture features that are traditionally chosen from a large set of fixed features known in literature. These fixed features are often not specifically designed to the problem at hand, and as a result they may have low discriminative power, and/or may be correlated. Increasing the number of selected fixed features is statistically not a good solution in limited data environments such as medical imaging. For that reason, we developed an adaptive texture feature extraction method (ATFE) that extracts a small number of features that are tuned to the problem at hand. By using a feed-forward neural network, we ensure that even nonlinear relations are captured from the data. Using extensive, repeated synthetic ultrasonic images, we compared the performance of ATFE with the optimal feature set. We show that the ATFE method is capable of robust operation on small data sets with a performance close to that of the optimal feature set. Another experiment confirms that our ATFE is capable of capturing nonlinear relations from the dataset. We conclude that our method can improve performance in practical, limited dataset situations where an optimal fixed feature set can be hard to find.


2011 ◽  
Vol 10 (3) ◽  
pp. 73-79 ◽  
Author(s):  
Jian Yang ◽  
Jingfeng Guo

Texture feature is a measure method about relationship among the pixels in local area, reflecting the changes of image space gray levels. This paper presents a texture feature extraction method based on regional average binary gray level difference co-occurrence matrix, which combined the texture structural analysis method with statistical method. Firstly, we calculate the average binary gray level difference of eight-neighbors of a pixel to get the average binary gray level difference image which expresses the variation pattern of the regional gray levels. Secondly, the regional co-occurrence matrix is constructed by using these average binary gray level differences. Finally, we extract the second-order statistic parameters reflecting the image texture feature from the regional co-occurrence matrix. Theoretical analysis and experimental results show that the image texture feature extraction method has certain accuracy and validity


This paper, explores to extract textural feature from ultrasound Adenomatous Hyperplasia thyroid nodule. The extracted texture feature will help the clinician to improve diagnostic accuracy. The Fine Needle Aspiration (FNA) and Histopathology report is the conventional diagnostic methodology. It is an invasive technique and patients are subjected to painful process. Non-invasive, non-contact and low cost imaging tool is essential to increase the clinical diagnostic accuracy. Ultrasound imaging is a potential non-invasive modality to capture Adenomatous Hyperplasia thyroid nodule. Adenomatous Hyperplasia thyroid nodule is the common inflammation in thyroid gland abnormality. The texture features, using Law’s Texture Energy Measures (Law’s TEM), Neighborhood Gray Tone Difference Matrix (NGTDM) and Statistical Feature Matrix (SFM) are extracted from normal and adenomatous hyperplasia of thyroid nodules. The normal and abnormal images are demarcated using T-test analysis. The extracted feature shows significant difference between normal and abnormal images with p value less than 0.001(p < 0.001). Hence the Law’s Texture Energy based feature may be used to identify the pathology in the thyroid ultrasound images.


2018 ◽  
Vol 40 (6) ◽  
pp. 357-379 ◽  
Author(s):  
Puja Bharti ◽  
Deepti Mittal ◽  
Rupa Ananthasivan

Chronic liver diseases are fifth leading cause of fatality in developing countries. Their early diagnosis is extremely important for timely treatment and salvage life. To examine abnormalities of liver, ultrasound imaging is the most frequently used modality. However, the visual differentiation between chronic liver and cirrhosis, and presence of heptocellular carcinomas (HCC) evolved over cirrhotic liver is difficult, as they appear almost similar in ultrasound images. In this paper, to deal with this difficult visualization problem, a method has been developed for classifying four liver stages, that is, normal, chronic, cirrhosis, and HCC evolved over cirrhosis. The method is formulated with selected set of “handcrafted” texture features obtained after hierarchal feature fusion. These multiresolution and higher order features, which are able to characterize echotexture and roughness of liver surface, are extracted by using ranklet, gray-level difference matrix and gray-level co-occurrence matrix methods. Thereafter, these features are applied on proposed ensemble classifier that is designed with voting algorithm in conjunction with three classifiers, namely, k–nearest neighbor (k-NN), support vector machine (SVM), and rotation forest. The experiments are conducted to evaluate the (a) effectiveness of “handcrafted” texture features, (b) performance of proposed ensemble model, (c) effectiveness of proposed ensemble strategy, (d) performance of different classifiers, and (e) performance of proposed ensemble model based on Convolutional Neural Networks (CNN) features to differentiate four liver stages. These experiments are carried out on database of 754 segmented regions of interest formed by clinically acquired ultrasound images. The results show that classification accuracy of 96.6% is obtained by use of proposed classifier model.


Author(s):  
Dilip k. Choudhury ◽  
Sujata Dash

The class of Textiles produced from terephthalic acid and ethylene glycol by condensation polymerization has many end-uses for example these are used as filter fabric in railway track to prevent soil erosion, in cement industry these are used in boiler department as filter fabric to prevent the fly-ash from mixing in the atmosphere. Presently, the quality checking is done by the human in the naked eye. The automation of quality check of the non-Newtonian fabric can be termed as Image Analysis or texture analysis problem. A Simulation study was carried out by the process of Image Analysis which consists of two steps the former is feature extraction and the later part is recognition. Various techniques or tools that are presently studied in research for texture feature extraction are Grey level co-occurrence matrix(GLCM), Markov Random Field, Gabor filter. A GLCM matrix with 28 Haralick features were taken as input for this chapter.


Complexity ◽  
2021 ◽  
Vol 2021 ◽  
pp. 1-11
Author(s):  
Guofang Qin ◽  
Guoliang Qin

As one of the most widely used methods in deep learning technology, convolutional neural networks have powerful feature extraction capabilities and nonlinear data fitting capabilities. However, the convolutional neural network method still has disadvantages such as complex network model, too long training time and excessive consumption of computing resources, slow convergence speed, network overfitting, and classification accuracy that needs to be improved. Therefore, this article proposes a dense convolutional neural network classification algorithm based on texture features for images in virtual reality videos. First, the texture feature of the image is introduced as a priori information to reflect the spatial relationship between pixels and the unique characteristics of different types of ground features. Second, the grey level cooccurrence matrix (GLCM) is used to extract the grey level correlation features of the image in space. Then, Gauss Markov Random Field (GMRF) is used to establish the statistical correlation characteristics between neighbouring pixels, and the extracted GLCM-GMRF texture feature and image intensity vector are combined. Finally, based on DenseNet, an improved shallow layer dense convolutional neural network (L-DenseNet) is proposed, which can compress network parameters and improve the feature extraction ability of the network. The experimental results show that compared with the current classification method, this method can effectively suppress the influence of coherent speckle noise and obtain better classification results.


Sign in / Sign up

Export Citation Format

Share Document