Application of a Chain Termination Assay for Characterization of Reverse Transcriptase from AZT-Resistant HIV Isolates

1996 ◽  
Vol 7 (6) ◽  
pp. 313-320 ◽  
Author(s):  
J. Lennerstrand ◽  
A.-S. Rytting ◽  
L. Vrang ◽  
J.S. Gronowitz ◽  
C.F.R. Källander

An enzymatic assay based on utilization of one primer/enzyme molecule was specifically designed for evaluation of the chain termination capacity of reverse transcriptase (RT) from HIV-1 isolates. In this assay system (CT assay) there was a 3.2-fold difference between the AZT-triphosphate (AZT-TP) concentrations required to terminate 50% of the primers (TC50) for a highly resistant isolate, carrying the four common mutations at positions 67, 70, 215, and 219; and two wild type isolates. Two of three other isolates with reduced sensitivity to AZT in cell culture exhibited intermediate values in CT assay, while one behaved as the wild type isolates. There was a correlation P = 0.05 ( r = 0.86, n = 6) between the ED50 values found in cell culture and the TC50 values found in CT assay. This relationship was not found in a similar assay system which measured competition between AZT-TP and 1 μM tymidine triphosphate (TTP) at the enzymatic level. The sequence data of the current isolates gave some information concerning which mutations in the RT gene specifically affect the enzymatic properties measured in CT assay. Mutation only at amino acid 70 had no effect, but the TC50 values found increased with accumulation of the other common AZT resistance mutations.

2002 ◽  
Vol 35 (3) ◽  
pp. 155 ◽  
Author(s):  
Xing-Wu Shao ◽  
Sandra Hjalmarsson ◽  
Johan Lennerstrand ◽  
Bo Svennerholm ◽  
Jonas Blomberg ◽  
...  

2021 ◽  
Author(s):  
Luc Blassel ◽  
Anna Tostevin ◽  
Christian Julian Villabona-Arenas ◽  
Martine Peeters ◽  
Stephane Hue ◽  
...  

Drug resistance mutations (DRMs) appear in HIV under treatment pressure. DRMs are commonly transmitted to naive patients. The standard approach to reveal new DRMs is to test for significant frequency differences of mutations between treated and naive patients. However, we then consider each mutation individually and cannot hope to study interactions between several mutations. Here, we aim to leverage the ever-growing quantity of high-quality sequence data and machine learning methods to study such interactions (i.e. epistasis), as well as try to find new DRMs. We trained classifiers to discriminate between Reverse Transcriptase Inhibitor (RTI)-experienced and RTI-naive samples on a large HIV-1 reverse transcriptase (RT) sequence dataset from the UK (n ≈ 55; 000), using all observed mutations as binary representation features. To assess the robustness of our findings, our classifiers were evaluated on independent data sets, both from the UK and Africa. Important representation features for each classifier were then extracted as potential DRMs. To find novel DRMs, we repeated this process by removing either features or samples associated to known DRMs. When keeping all known resistance signal, we detected sufficiently prevalent known DRMs, thus validating the approach. When removing features corresponding to known DRMs, our classifiers retained some prediction accuracy, and six new mutations significantly associated with resistance were identified. These six mutations have a low genetic barrier, are correlated to known DRMs, and are spatially close to either the RT active site or the regulatory binding pocket. When removing both known DRM features and sequences containing at least one known DRM, our classifiers lose all prediction accuracy. These results likely indicate that all mutations directly conferring resistance have been found, and that our newly discovered DRMs are accessory or compensatory mutations. Moreover, we did not find any significant signal of epistasis, beyond the standard resistance scheme associating major DRMs to auxiliary mutations.


2004 ◽  
Vol 48 (8) ◽  
pp. 3122-3126 ◽  
Author(s):  
Soo-Yon Rhee ◽  
Tommy Liu ◽  
Jaideep Ravela ◽  
Matthew J. Gonzales ◽  
Robert W. Shafer

ABSTRACT In a sample of 6,156 sequences from 4,183 persons, the top 30 patterns of protease inhibitor, nucleoside reverse transcriptase (RT) inhibitor, and nonnucleoside RT inhibitor mutations accounted for 55, 46, and 66%, respectively, of sequences with drug resistance mutations. Characterization of the phenotypic and clinical significance of these common patterns may lead to improved treatment recommendations for a large proportion of patients for whom antiretroviral therapy is failing.


2004 ◽  
Vol 48 (3) ◽  
pp. 992-1003 ◽  
Author(s):  
Kirsten L. White ◽  
James M. Chen ◽  
Nicolas A. Margot ◽  
Terri Wrin ◽  
Christos J. Petropoulos ◽  
...  

ABSTRACT Two amino acids inserted between residues 69 and 70 of human immunodeficiency virus type 1 (HIV-1) reverse transcriptase (RT) are rare mutations that may develop in viruses containing multiple thymidine analog (zidovudine [AZT], stavudine)-associated mutations and that confer high-level resistance to all currently approved chain-terminating nucleoside and nucleotide RT inhibitors (NRTIs). The two known mechanisms of resistance to NRTIs are decreased incorporation and increased excision. The mechanism used by RT insertion mutants has not been described for tenofovir (TFV), a recently approved agent in this class. A patient-derived HIV-1 strain (strain FS-SSS) that contained an insertion mutation in a background of additional resistance mutations M41L, L74V, L210W, and T215Y was obtained. A second virus (strain FS) was derived from FS-SSS. In strain FS the insertion and T69S were reverted but the other resistance mutations were retained. The FS virus showed strong resistance to AZT but low-level changes in susceptibilities to other NRTIs and TFV. The FS-SSS virus showed reduced susceptibilities to all NRTIs including TFV. Steady-state kinetics demonstrated that the relative binding or incorporation of TFV was slightly decreased for FS-SSS RT compared to those for wild-type RT. However, significant ATP-mediated excision of TFV was detected for both mutant RT enzymes and followed the order FS-SSS RT > FS RT > wild-type RT. The presence of physiological concentrations of the +1 nucleotide inhibited TFV excision by the wild-type RT and slightly inhibited excision by the FS RT, whereas the level of excision by the FS-SSS RT remained high. Computer modeling suggests that the increased mobility of the β3-β4 loop may contribute to the high-level and broad NRTI resistance caused by the T69 insertion mutation.


1998 ◽  
Vol 18 (11) ◽  
pp. 6525-6537 ◽  
Author(s):  
Wenliang Chen ◽  
Sue Jinks-Robertson

Mismatch repair (MMR) proteins actively inhibit recombination between diverged sequences in both prokaryotes and eukaryotes. Although the molecular basis of the antirecombination activity exerted by MMR proteins is unclear, it presumably involves the recognition of mismatches present in heteroduplex recombination intermediates. This recognition could be exerted during the initial stage of strand exchange, during the extension of heteroduplex DNA, or during the resolution of recombination intermediates. We previously used an assay system based on 350-bp inverted-repeat substrates to demonstrate that MMR proteins strongly inhibit mitotic recombination between diverged sequences inSaccharomyces cerevisiae. The assay system detects only those events that reverse the orientation of the region between the recombination substrates, which can occur as a result of either intrachromatid crossover or sister chromatid conversion. In the present study we sequenced the products of mitotic recombination between 94%-identical substrates in order to map gene conversion tracts in wild-type versus MMR-defective yeast strains. The sequence data indicate that (i) most recombination occurs via sister chromatid conversion and (ii) gene conversion tracts in an MMR-defective strain are significantly longer than those in an isogenic wild-type strain. The shortening of conversion tracts observed in a wild-type strain relative to an MMR-defective strain suggests that at least part of the antirecombination activity of MMR proteins derives from the blockage of heteroduplex extension in the presence of mismatches.


2011 ◽  
Vol 55 (8) ◽  
pp. 3758-3764 ◽  
Author(s):  
Jeffrey D. Meteer ◽  
Dianna Koontz ◽  
Ghazia Asif ◽  
Hong-wang Zhang ◽  
Mervi Detorio ◽  
...  

ABSTRACTWe recently reported that HIV-1 resistant to 3′-azido-3′-deoxythymidine (AZT) is not cross-resistant to 3′-azido-2′,3′-dideoxypurines. This finding suggested that the nucleoside base is a major determinant of HIV-1 resistance to nucleoside analogs. To further explore this hypothesis, we conductedin vitroselection experiments by serial passage of HIV-1LAIin MT-2 cells in increasing concentrations of 3′-azido-2′,3′-dideoxyguanosine (3′-azido-ddG), 3′-azido-2′,3′-dideoxycytidine (3′-azido-ddC), or 3′-azido-2′,3′-dideoxyadenosine (3′-azido-ddA). 3′-Azido-ddG selected for virus that was 5.3-fold resistant to 3′-azido-ddG compared to wild-type HIV-1LAIpassaged in the absence of drug. Population sequencing of the entire reverse transcriptase (RT) gene identified L74V, F77L, and L214F mutations in the polymerase domain and K476N and V518I mutations in the RNase H domain. However, when introduced into HIV-1 by site-directed mutagenesis, these 5 mutations only conferred ∼2.0-fold resistance. Single-genome sequencing analyses of the selected virus revealed a complex population of mutants that all contained L74V and L214F linked to other mutations, including ones not identified during population sequencing. Recombinant HIV-1 clones containing RT derived from single sequences exhibited 3.2- to 4.0-fold 3′-azido-ddG resistance. In contrast to 3′-azido-ddG, 3′-azido-ddC selected for the V75I mutation in HIV-1 RT that conferred 5.9-fold resistance, compared to the wild-type virus. Interestingly, we were unable to select HIV-1 that was resistant to 3′-azido-ddA, even at concentrations of 3′-azido-ddA that yielded high intracellular levels of 3′-azido-ddA-5′-triphosphate. Taken together, these findings show that the nucleoside base is a major determinant of HIV-1 resistance mechanisms that can be exploited in the design of novel nucleoside RT inhibitors.


2004 ◽  
Vol 48 (5) ◽  
pp. 1570-1580 ◽  
Author(s):  
Giada A. Locatelli ◽  
Giuseppe Campiani ◽  
Reynel Cancio ◽  
Elena Morelli ◽  
Anna Ramunno ◽  
...  

ABSTRACT We have previously described a novel class of nonnucleoside reverse transcriptase (RT) inhibitors, the pyrrolobenzoxazepinone (PBO) and the pyridopyrrolooxazepinone (PPO) derivatives, which were effective inhibitors of human immunodeficiency virus type 1 (HIV-1) RT, either wild type or carrying known drug resistance mutations (G. Campiani et al., J. Med. Chem. 42:4462-4470, 1999). The lead compound of the PPO class, (R)-(−)-PPO464, was shown to selectively target the ternary complex formed by the viral RT with its substrates nucleic acid and nucleotide (G. Maga et al., J. Biol. Chem. 276:44653-44662, 2001). In order to better understand the structural basis for this selectivity, we exploited some PBO analogs characterized by various substituents at C-3 and by different inhibition potencies and drug resistance profiles, and we studied their interaction with HIV-1 RT wild type or carrying the drug resistance mutations L100I and V106A. Our kinetic and thermodynamic analyses showed that the formation of the complex between the enzyme and the nucleotide increased the inhibition potency of the compound PBO354 and shifted the free energy (energy of activation, ΔG#) for inhibitor binding toward more negative values. The V106A mutation conferred resistance to PBO 354 by increasing its dissociation rate from the enzyme, whereas the L100I mutation mainly decreased the association rate. This latter mutation also caused a severe reduction in the catalytic efficiency of the RT. These results provide a correlation between the efficiency of nucleotide utilization by RT and its resistance to PBO inhibition.


2021 ◽  
Vol 17 (8) ◽  
pp. e1008873
Author(s):  
Luc Blassel ◽  
Anna Tostevin ◽  
Christian Julian Villabona-Arenas ◽  
Martine Peeters ◽  
Stéphane Hué ◽  
...  

Drug resistance mutations (DRMs) appear in HIV under treatment pressure. DRMs are commonly transmitted to naive patients. The standard approach to reveal new DRMs is to test for significant frequency differences of mutations between treated and naive patients. However, we then consider each mutation individually and cannot hope to study interactions between several mutations. Here, we aim to leverage the ever-growing quantity of high-quality sequence data and machine learning methods to study such interactions (i.e. epistasis), as well as try to find new DRMs. We trained classifiers to discriminate between Reverse Transcriptase Inhibitor (RTI)-experienced and RTI-naive samples on a large HIV-1 reverse transcriptase (RT) sequence dataset from the UK (n ≈ 55, 000), using all observed mutations as binary representation features. To assess the robustness of our findings, our classifiers were evaluated on independent data sets, both from the UK and Africa. Important representation features for each classifier were then extracted as potential DRMs. To find novel DRMs, we repeated this process by removing either features or samples associated to known DRMs. When keeping all known resistance signal, we detected sufficiently prevalent known DRMs, thus validating the approach. When removing features corresponding to known DRMs, our classifiers retained some prediction accuracy, and six new mutations significantly associated with resistance were identified. These six mutations have a low genetic barrier, are correlated to known DRMs, and are spatially close to either the RT active site or the regulatory binding pocket. When removing both known DRM features and sequences containing at least one known DRM, our classifiers lose all prediction accuracy. These results likely indicate that all mutations directly conferring resistance have been found, and that our newly discovered DRMs are accessory or compensatory mutations. Moreover, apart from the accessory nature of the relationships we found, we did not find any significant signal of further, more subtle epistasis combining several mutations which individually do not seem to confer any resistance.


Author(s):  
Maria E. Cilento ◽  
Aaron B. Reeve ◽  
Eleftherios Michailidis ◽  
Tatiana V. Ilina ◽  
Eva Nagy ◽  
...  

4’-ethynyl-2-fluoro-2’-deoxyadenosine (EFdA, MK-8591, islatravir) is a nucleoside reverse transcriptase translocation inhibitor (NRTTI) with exceptional potency against WT and drug-resistant HIV-1, in Phase III clinical trials. EFdA resistance is not well characterized. To study EFdA-resistance patterns as it may emerge in naïve or tenofovir- (TFV), emtricitabine/lamivudine- (FTC/3TC), or zidovudine- (AZT) treated patients we performed viral passaging experiments starting with wild-type, K65R, M184V, or D67N/K70R/T215F/K219Q HIV-1. Regardless the starting viral sequence, all selected EFdA-resistant variants included the M184V RT mutation. Using recombinant viruses, we validated the role for M184V as the primary determinant of EFdA resistance; none of the observed connection subdomain (R358K and E399K) or RNase H domain (A502V) mutations significantly contributed to EFdA resistance. A novel EFdA resistance mutational pattern that included A114S was identified in the background of M184V. A114S/M184V exhibited higher EFdA resistance (∼24-fold) than M184V (∼8-fold) or A114S alone (∼2-fold). Remarkably, A114S/M184V and A114S/M184V/A502V resistance mutations were up to 50-fold more sensitive to tenofovir than WT HIV-1. These mutants also had significantly lower specific infectivity than WT. Biochemical experiments confirmed decreases in the enzymatic efficiency (k cat /K m ) of WT vs. A114S (2.1-fold) and A114S/M184V/A502V (6.5-fold) RTs, with no effect of A502V on enzymatic efficiency or specific infectivity. The rather modest EFdA resistance of M184V or A114S/M184V (8- and 24-fold), their hypersusceptibility to tenofovir, and strong published in vitro and in vivo data, suggest that EFdA is an excellent therapeutic candidate for naïve, AZT-, FTC/3TC, and especially tenofovir-treated patients.


Sign in / Sign up

Export Citation Format

Share Document