scholarly journals Mismatch Repair Proteins Regulate Heteroduplex Formation during Mitotic Recombination in Yeast

1998 ◽  
Vol 18 (11) ◽  
pp. 6525-6537 ◽  
Author(s):  
Wenliang Chen ◽  
Sue Jinks-Robertson

Mismatch repair (MMR) proteins actively inhibit recombination between diverged sequences in both prokaryotes and eukaryotes. Although the molecular basis of the antirecombination activity exerted by MMR proteins is unclear, it presumably involves the recognition of mismatches present in heteroduplex recombination intermediates. This recognition could be exerted during the initial stage of strand exchange, during the extension of heteroduplex DNA, or during the resolution of recombination intermediates. We previously used an assay system based on 350-bp inverted-repeat substrates to demonstrate that MMR proteins strongly inhibit mitotic recombination between diverged sequences inSaccharomyces cerevisiae. The assay system detects only those events that reverse the orientation of the region between the recombination substrates, which can occur as a result of either intrachromatid crossover or sister chromatid conversion. In the present study we sequenced the products of mitotic recombination between 94%-identical substrates in order to map gene conversion tracts in wild-type versus MMR-defective yeast strains. The sequence data indicate that (i) most recombination occurs via sister chromatid conversion and (ii) gene conversion tracts in an MMR-defective strain are significantly longer than those in an isogenic wild-type strain. The shortening of conversion tracts observed in a wild-type strain relative to an MMR-defective strain suggests that at least part of the antirecombination activity of MMR proteins derives from the blockage of heteroduplex extension in the presence of mismatches.

2017 ◽  
Author(s):  
Yi Yin ◽  
Margaret Dominska ◽  
Eunice Yim ◽  
Thomas D. Petes

AbstractDouble-stranded DNA breaks (DSBs) can be generated by both endogenous and exogenous agents. In diploid yeast strains, such breaks are usually repaired by homologous recombination (HR), and a number of different HR pathways have been described. An early step for all HR pathways is formation of a heteroduplex, in which a single-strand from the broken DNA molecule pairs with a strand derived from an intact DNA molecule. If the two strands of DNA are not identical, within the heteroduplex DNA (hetDNA), there will be mismatches. In a wild-type strain, these mismatches are removed by the mismatch repair (MMR) system. In strains lacking MMR, the mismatches persist and can be detected by a variety of genetic and physical techniques. Most previous studies involving hetDNA formed during mitotic recombination have been restricted to a single locus with DSBs induced at a defined position by a site-specific endonuclease. In addition, in most of these studies, recombination between repeated genes was examined; in such studies, the sequence homologies were usually less than 5 kb. In the present study, we present a global mapping of hetDNA formed in a UV-treated MMR-defective mlh1 strain. Although about two-thirds of the recombination events were associated with hetDNA with a continuous array of unrepaired mismatches, in about one-third of the events, we found regions of unrepaired mismatches flanking regions without mismatches. We suggest that these discontinuous hetDNAs involve template switching during repair synthesis, repair of a double-stranded DNA gap, and/or Mlh1-independent MMR. Many of our observed events are not explicable by the simplest form of the double-strand break repair (DSBR) model of recombination. We also studied hetDNA associated with spontaneous recombination events selected on chromosomes IV and V in a wild-type strain. The interval on chromosome IV contained a hotspot for spontaneous crossovers generated by an inverted pair of transposable elements (HS4). We showed that HS4-induced recombination events are associated with the formation of very large (>30 kb) double-stranded DNA gaps.


1987 ◽  
Vol 7 (5) ◽  
pp. 2007-2011
Author(s):  
C A Hoy ◽  
J C Fuscoe ◽  
L H Thompson

Transformation frequencies were measured in CHO mutant EM9 after transfection with intact or modified plasmid pSV2-gpt. The mutant and wild-type strain behaved similarly under all conditions except when homologous recombination was required to produce an intact plasmid. Therefore, the defect of the mutant which renders it slow in DNA strand break rejoining and high in sister chromatid exchange induction reduces its ability to recombine foreign DNA molecules.


Genetics ◽  
1999 ◽  
Vol 151 (4) ◽  
pp. 1299-1313 ◽  
Author(s):  
Wenliang Chen ◽  
Sue Jinks-Robertson

Abstract Nonidentical recombination substrates recombine less efficiently than do identical substrates in yeast, and much of this inhibition can be attributed to action of the mismatch repair (MMR) machinery. In this study an intron-based inverted repeat assay system has been used to directly compare the rates of mitotic and meiotic recombination between pairs of 350-bp substrates varying from 82% to 100% in sequence identity. The recombination rate data indicate that sequence divergence impacts mitotic and meiotic recombination similarly, although subtle differences are evident. In addition to assessing recombination rates as a function of sequence divergence, the endpoints of mitotic and meiotic recombination events involving 94%-identical substrates were determined by DNA sequencing. The endpoint analysis indicates that the extent of meiotic heteroduplex DNA formed in a MMR-defective strain is 65% longer than that formed in a wild-type strain. These data are consistent with a model in which the MMR machinery interferes with the formation and/or extension of heteroduplex intermediates during recombination.


2021 ◽  
Author(s):  
Christiaan H van Dorp ◽  
Emma E Goldberg ◽  
Nicolas Hengartner ◽  
Ruian Ke ◽  
Ethan Obie Romero-Severson

A challenge to controlling the SARS-CoV-2 pandemic is the ability of the virus to adapt to its new human hosts, with novel and more transmissible strains of the virus being continually identified. Yet there are no generally accepted methods to consistently estimate the relative magnitude of the change in transmissiblity of newly emerging variants. In this paper we consider three methods for examining and quantifying positive selection of new and emerging strains of SARS-CoV-2 over an existing wild-type strain. We consider replication at the level of countries and allow for the action of other processes that can change variants' frequencies, specifically migration and drift. We apply these methods to the D614G spike mutation and the variant designated B.1.1.7, in every country where there is sufficient sequence data. For each of D614G and B.1.1.7, we find evidence for strong selection (greater than 25% increased contagiousness) in more than half of countries analyzed. Our results also shows that the selective advantages of these strains are highly heterogeneous at the country level, suggesting the need for a truly global perspective on the molecular epidemiology of SARS-CoV-2.


2001 ◽  
Vol 183 (17) ◽  
pp. 4958-4963 ◽  
Author(s):  
Takashi Inaoka ◽  
Koji Kasai ◽  
Kozo Ochi

ABSTRACT To investigate the function of ribosomal proteins and translational factors in Bacillus subtilis, we developed an in vivo assay system to measure the level of nonsense readthrough by utilizing the LacZ-LacI system. Using the in vivo nonsense readthrough assay system which we developed, together with an in vitro poly(U)-directed cell-free translation assay system, we compared the processibility and translational accuracy of mutant ribosomes with those of the wild-type ribosome. Like Escherichia coli mutants, most S12 mutants exhibited lower frequencies of both UGA readthrough and missense error; the only exception was a mutant (in which Lys-56 was changed to Arg) which exhibited a threefold-higher frequency of readthrough than the wild-type strain. We also isolated several ribosomal ambiguity (ram) mutants from an S12 mutant. These ram mutants and the S12 mutant mentioned above (in which Lys-56 was changed to Arg) exhibited higher UGA readthrough levels. Thus, the mutation which altered Lys-56 to Arg resulted in aram phenotype in B. subtilis. The efficacy of our in vivo nonsense readthrough assay system was demonstrated in our investigation of the function of ribosomal proteins and translational factors.


Genetics ◽  
1994 ◽  
Vol 138 (3) ◽  
pp. 587-595 ◽  
Author(s):  
A J Rattray ◽  
L S Symington

Abstract An intrachromosomal recombination assay that monitors events between alleles of the ade2 gene oriented as inverted repeats was developed. Recombination to adenine prototrophy occurred at a rate of 9.3 x 10(-5)/cell/generation. Of the total recombinants, 50% occurred by gene conversion without crossing over, 35% by crossover and 15% by crossover associated with conversion. The rate of recombination was reduced 3,000-fold in a rad52 mutant, but the distribution of residual recombination events remained similar to that seen in the wild type strain. In rad51 mutants the rate of recombination was reduced only 4-fold. In this case, gene conversion events unassociated with a crossover were reduced 18-fold, whereas crossover events were reduced only 2.5-fold. A rad51 rad52 double mutant strain showed the same reduction in the rate of recombination as the rad52 mutant, but the distribution of events resembled that seen in rad51. From these observations it is concluded that (i) RAD52 is required for high levels of both gene conversions and reciprocal crossovers, (ii) that RAD51 is not required for intrachromosomal crossovers, and (iii) that RAD51 and RAD52 have different functions, or that RAD52 has functions in addition to those of the Rad51/Rad52 protein complex.


Microbiology ◽  
2004 ◽  
Vol 150 (5) ◽  
pp. 1327-1338 ◽  
Author(s):  
Andrea M. Smania ◽  
Ignacio Segura ◽  
Roberto J. Pezza ◽  
Cecilia Becerra ◽  
Inés Albesa ◽  
...  

MutS is part of the bacterial mismatch repair system that corrects point mutations and small insertions/deletions that fail to be proof-read by DNA polymerase activity. In this work it is shown that the disruption of the P. aeruginosa mutS gene generates the emergence of diverse colony morphologies in contrast with its parental wild-type strain that displayed monomorphic colonies. Interestingly, two of the mutS morphotypes emerged at a high frequency and in a reproducible way and were selected for subsequent characterization. One of them displayed a nearly wild-type morphology while the other notably showed, compared with the wild-type strain, increased production of pyocyanin and pyoverdin, lower excretion of LasB protease and novel motility characteristics, mainly related to swarming. Furthermore, it was reproducibly observed that, after prolonged incubation in liquid culture, the pigmented variant consistently emerged from the mutS wild-type-like variant displaying a reproducible event. It is also shown that these P. aeruginosa mutS morphotypes not only displayed an increase in the frequency of antibiotic-resistant mutants, as described for clinical P. aeruginosa mutator isolates, but also generated mutants whose antibiotic-resistant levels were higher than those measured from spontaneous resistant mutants derived from wild-type cells. It was also found that both morphotypes showed a decreased cytotoxic capacity compared to the wild-type strain, leading to the emergence of invasive variants. By using mutated versions of a tetracycline resistance gene, the mutS mutant showed a 70-fold increase in the reversion frequency of a +1 frameshift mutation with respect to its parental wild-type strain, allowing the suggestion that the phenotypical diversity generated in the mutS population could be produced in part by frameshift mutations. Finally, since morphotypical diversification has also been described in clinical isolates, the possibility that this mutS diversification was related to the high frequency hypermutability observed in P. aeruginosa CF isolates is discussed.


1987 ◽  
Vol 7 (5) ◽  
pp. 2007-2011 ◽  
Author(s):  
C A Hoy ◽  
J C Fuscoe ◽  
L H Thompson

Transformation frequencies were measured in CHO mutant EM9 after transfection with intact or modified plasmid pSV2-gpt. The mutant and wild-type strain behaved similarly under all conditions except when homologous recombination was required to produce an intact plasmid. Therefore, the defect of the mutant which renders it slow in DNA strand break rejoining and high in sister chromatid exchange induction reduces its ability to recombine foreign DNA molecules.


Genetics ◽  
1983 ◽  
Vol 104 (4) ◽  
pp. 603-618
Author(s):  
Michael A Resnick ◽  
John C Game ◽  
Stanley Stasiewicz

ABSTRACT The lethal and recombinational responses to ultraviolet light irradiation (UV) by excision-proficient (RAD  +) and deficient strains (rad1) of Saccharomyces cerevisiae has been examined in cells undergoing meiosis. Cells that exhibit high levels of meiotic synchrony were irradiated either at the beginning or at various times during meiosis and allowed to proceed through meiosis. Based on survival responses, the only excision repair mechanism for UV damage available during meiosis is that controlled by the RAD1 pathway. The presence of pyrimidine dimers at the beginning of meiosis does not prevent cells from undergoing meiosis; however, the spore products exhibit much lower survival than cells from earlier stages of meiosis. The reduced survival is probably due to effects of UV on recombination. Meiotic levels of gene conversion are reduced only two to three times in these experiments; however, intergenic recombination is nearly abolished after a dose of 4 J/m2 to the rad1 strain. Exposure to 25 J/m2 had little effect on the wild-type strain. Since normal meiotic reciprocal recombination is generally considered to involve gene conversion-type intermediates, it appears that unrepaired UV damage dissociates the two processes. These results complement those obtained with the mei-9 mutants of Drosophila which also demonstrate a dissociation between gene conversion and reciprocal recombination. These results are consistent with molecular observations on the UV-irradiated rad1 strain in that there is no excision of pyrimidine dimers or exchange of dimers during meiosis.


Genetics ◽  
1996 ◽  
Vol 142 (2) ◽  
pp. 383-391 ◽  
Author(s):  
Yasumasa Tsukamoto ◽  
Jun-ichi Kato ◽  
Hideo Ikeda

Abstract To examine the mechanism of illegitimate recombination in Saccharomyces cerevisiae, we have developed a plasmid system for quantitative analysis of deletion formation. A can1 cyh2 cell carrying two negative selection markers, the CAN1 and CYH2 genes, on a YCp plasmid is sensitive to canavanine and cycloheximide, but the cell becomes resistant to both drugs when the plasmid has a deletion over the CAN1 and CYH2 genes. Structural analysis of the recombinant plasmids obtained from the resistant cells showed that the plasmids had deletions at various sites of the CAN1-CYH2 region and there were only short regions of homology (1-5 bp) at the recombination junctions. The results indicated that the deletion detected in this system were formed by illegitimate recombination. Study on the effect of several rad mutations showed that the recombination rate was reduced by 30-, 10-, 10-, and 10-fold in the rad52, rad50, mre11, and xrs2 mutants, respectively, while in the rud51, 54, 55, and 57 mutants, the rate was comparable to that in the wild-type strain. The rad52 mutation did not affect length of homology at junction sites of illegitimate recombination.


Sign in / Sign up

Export Citation Format

Share Document