The assessment of the effect of binary homogeneous nucleation on wet steam energy loss in a low pressure steam turbine

Author(s):  
Vaclav Petr ◽  
Michal Kolovratnik
Author(s):  
Tadashi Tanuma ◽  
Yasuhiro Sasao ◽  
Satoru Yamamoto ◽  
Yoshiki Niizeki ◽  
Naoki Shibukawa ◽  
...  

The purpose of this paper is to explain aerodynamic interaction effects from upstream and downstream on the down-flow type exhaust diffuser performance in a low pressure steam turbine. To increase exhaust diffuser performance, design data related to the aerodynamic interaction effects from upstream turbine stages and downstream exhaust hood geometry on the exhaust diffuser performance would be very useful. This paper presents numerical investigation of three dimensional wet steam flows in a down-flow type exhaust diffuser with non-uniform inlet flow from a typical last stage with long transonic blades designed with recent aerodynamic and mechanical design technology. Previous studies show that small scale model tests and CFD analyses of exhaust diffusers with uniform inlet flow conditions are not enough to investigate diffuser efficiency and detail diffuser flow mechanism because inlet flow structures including tip leakage flows and blade wakes superimposed from a last stage and several other upstream turbine stages in low pressure turbines affect flow separations that reduce the exhaust diffuser performance. Recent studies by the authors show that the introduction of radial distributions of velocities and flow angles at the inlet section of exhaust diffuser measured in a full scale development steam turbine increased the accuracy of numerical analysis of diffuser flow. In the present study, the computational domain was enhanced and the method of boundary condition definition was improved to increase the accuracy of boundary layer separation and separation vortex generation in wet steam flows. Using the improved method, the calculation results explained the aerodynamic interaction effects from upstream and downstream on the down-flow type exhaust diffuser performance.


2017 ◽  
Vol 21 (suppl. 1) ◽  
pp. 161-167 ◽  
Author(s):  
Kezhen Huang ◽  
Lin Cai ◽  
Jianshu Gao ◽  
Zhuo Liu ◽  
Xinggang Yu

The numerical investigation on the wet steam flow in the last two stages of a 1000 MW fossil-fired low pressure steam turbine is presented in this paper. The non-equilibrium model via the classical nucleation theory is employed to simulate the condensing flow of the wet steam. The characteristics of the flow filed from design condition to low volume flow condition are calculated and the static performance of last stage moving blade is also obtained. The development of the backflow phenomenon is clearly captured through the analysis of the velocity triangle.


Author(s):  
Jo¨rg Starzmann ◽  
M. Schatz ◽  
M. V. Casey ◽  
J. F. Mayer ◽  
Frank Sieverding

Results of numerical investigations of the wet steam flow in a three stage low pressure steam turbine test rig are presented. The test rig is a scale model of a modern steam turbine design and provides flow measurements over a range of operating conditions which are used for detailed comparisons with the numerical results. For the numerical analysis a modern CFD code with user defined models for specific wet steam modelling is used. The effect of different theoretical models for nucleation and droplet growth are examined. It is shown that heterogeneous condensation is highly dependent on steam quality and, in this model turbine with high quality steam, a homogeneous theory appears to be the best choice. The homogeneous theory gives good agreement between the test rig traverse measurements and the numerical results. The differences in the droplet size distribution of the three stage turbine are shown for different loads and modelling assumptions. The different droplet growth models can influence the droplet size by a factor of two. An estimate of the influence of unsteady effects is made by means of an unsteady two-dimensional simulation. The unsteady modelling leads to a shift of nucleation into the next blade row. For the investigated three stage turbine the influence due to wake chopping on the condensation process is weak but to confirm this conclusion further investigations are needed in complete three dimensions and on turbines with more stages.


Author(s):  
Satoshi Miyake ◽  
Itsuro Koda ◽  
Satoru Yamamoto ◽  
Yasuhiro Sasao ◽  
Kazuhiro Momma ◽  
...  

A practical unsteady 3-D wet-steam flow through stator-rotor blade rows in a low-pressure steam turbine final three stages is numerically investigated. In ASME Turbo Expo 2013, we presented numerical results of unsteady 3-D wet-steam flows through three-stage stator-rotor low-aspect blade rows in a low-pressure steam turbine model designed by Mitsubishi Heavy Industry (MHI) assuming nonequilibrium condensation. The last study is extended to the final three stages with large aspect blade rows. The discussion in this paper is mainly focused on the effect of unsteady wake and vortex interactions on nonequilibrium condensation computed by our in-house code “Numerical Turbine System (NTS)”. In addition, the NTS and the future perspective are also briefly introduced.


2021 ◽  
Vol 1096 (1) ◽  
pp. 012097
Author(s):  
A M Kongkong ◽  
H Setiawan ◽  
J Miftahul ◽  
A R Laksana ◽  
I Djunaedi ◽  
...  

Author(s):  
Dickson Munyoki ◽  
Markus Schatz ◽  
Damian M. Vogt

The performance of the axial-radial diffuser downstream of the last low-pressure steam turbine stages and the losses occurring subsequently within the exhaust hood directly influences the overall efficiency of a steam power plant. It is estimated that an improvement of the pressure recovery in the diffuser and exhaust hood by 10% translates into 1% of last stage efficiency [11]. While the design of axial-radial diffusers has been the object of quite many studies, the flow phenomena occurring within the exhaust hood have not received much attention in recent years. However, major losses occur due to dissipation within vortices and inability of the hood to properly diffuse the flow. Flow turning from radial to downward flow towards the condenser, especially at the upper part of the hood is essentially the main cause for this. This paper presents a detailed analysis of the losses within the exhaust hood flow for two operating conditions based on numerical results. In order to identify the underlying mechanisms and the locations where dissipation mainly occurs, an approach was followed, whereby the diffuser inflow is divided into different sectors and pressure recovery, dissipation and finally residual kinetic energy of the flow originating from these sectors is calculated at different locations within the hood. Based on this method, the flow from the topmost sectors at the diffuser inlet is found to cause the highest dissipation for both investigated cases. Upon hitting the exhaust hood walls, the flow on the upper part of the diffuser is deflected, forming complex vortices which are stretching into the condenser and interacting with flow originating from other sectors, thereby causing further swirling and generating additional losses. The detailed study of the flow behavior in the exhaust hood and the associated dissipation presents an opportunity for future investigations of efficient geometrical features to be introduced within the hood to improve the flow and hence the overall pressure recovery coefficient.


Sign in / Sign up

Export Citation Format

Share Document