Effects of number of inlet guide vanes on the aerodynamic performance of a centrifugal compressor

Author(s):  
M Anbarsooz ◽  
M Amiri ◽  
A Erfanian ◽  
E Benini

Variable inlet guide vanes (VIGVs) are widely used for flow throttling and also extending the operating range of centrifugal compressors. Although there are several studies on the effects of adding IGVs on the performance curve of the compressors, none of them have focused on the number of vanes. In the current study, high-fidelity three-dimensional numerical simulations are carried out to analyze the effects of adding VIGVs with different number of vanes on the aerodynamic performance of a single-stage centrifugal compressor. The selected compressor prototype is a high flowrate single-stage compressor equipped with a vaned diffuser, designed and fabricated by Siemens. Computational fluid dynamic simulations are performed for three different number of guide vanes at three IGV inclination angles of 0, −30 and +45 degrees. The numerical results are validated by comparing the pressure-rise curves with the available experimental data of the compressor data sheet, where a good agreement was achieved. Results show that at the fully-open condition, the number of vanes does not have considerable effect on the performance curve of the compressor. However, as the IGV inclination angle increases, the number of inlet vanes plays a considerable role in the compressor efficiency. For example, at IGV inclination angle of +45 degree, increasing the number of vanes from 7 to 11 can increase the compressor maximum efficiency up to 5 points. Numerical results showed that increasing the number of inlet guide vanes imposes a higher pressure drop in the inlet passage of the compressor while generating a more uniform velocity distribution at the suction surface of the impeller. Due to the existence of several counteracting effects, an optimum number of inlet guide vanes can be found.

Author(s):  
Qifeng Ni ◽  
Anping Hou ◽  
Ye Tian ◽  
Quanyong Xu ◽  
Enlai Liu

A single stage centrifugal compressor has been designed for industrial use. Adjustable Inlet Guide Vanes (IGVs) and vaned diffusers were equipped to meet the requirement of large flow range, high efficiency and constant shaft speed. Both numerical calculations and experiments were implemented to get the performance of this new designed centrifugal compressor. The influence of adjustable IGVs and vaned diffusers on the stage performance characteristic was examined by numerical method. It is shown that numerical simulation results are close to the measured results and predict the stall limit well. The new centrifugal compressor has a comparatively high efficiency and wide operating range. Moreover, unilateral adjustment of either IGV pre-whirl angle or vaned diffuser stagger angle enables an increase in stable operating range opposed to the stage configuration with no adjustment. The combination of simultaneous adjustment of the IGVs and diffuser vanes can not only provide even wider flow range but also keep high efficiency. The identical working point can be operated at different IGV pre-whirl angles and diffuser stagger angles, hence the optimum adjustment schedule for the specified operating line was dug up to obtain an optimum efficiency. Detailed flow field analysis was performed to validated the suitable simultaneous adjustment combinations.


2020 ◽  
Vol 14 (4) ◽  
pp. 7369-7378
Author(s):  
Ky-Quang Pham ◽  
Xuan-Truong Le ◽  
Cong-Truong Dinh

Splitter blades located between stator blades in a single-stage axial compressor were proposed and investigated in this work to find their effects on aerodynamic performance and operating stability. Aerodynamic performance of the compressor was evaluated using three-dimensional Reynolds-averaged Navier-Stokes equations using the k-e turbulence model with a scalable wall function. The numerical results for the typical performance parameters without stator splitter blades were validated in comparison with experimental data. The numerical results of a parametric study using four geometric parameters (chord length, coverage angle, height and position) of the stator splitter blades showed that the operational stability of the single-stage axial compressor enhances remarkably using the stator splitter blades. The splitters were effective in suppressing flow separation in the stator domain of the compressor at near-stall condition which affects considerably the aerodynamic performance of the compressor.


Author(s):  
Ronald P. Porter

A high efficiency, low cost gas compressor is under development. Design has been completed and fabrication is in process. The manufacturer’s background in centrifugal compressor design and current methodology is discussed along with product definition. Assembly and test of the first unit is planned for summer 1996. The design features a single-stage overhung centrifugal compressor, variable inlet guide vanes, and dry gas seals.


2020 ◽  
Vol 12 (11) ◽  
pp. 168781402097490
Author(s):  
Fenghui Han ◽  
Zhe Wang ◽  
Yijun Mao ◽  
Jiajian Tan ◽  
Wenhua Li

Inlet chambers (IC) are the typical upstream component of centrifugal compressors, and inlet guide vanes in the IC have a great impact on its internal flow and aerodynamic loss, which will significantly influence the performance of the downstream compressor stages. In this paper, an experimental study was carried out on the flow characteristics inside a radial IC of an industrial centrifugal compressor, including five testing sections and 968 measuring points for two schemes with and without guide vanes. Detailed distributions of flow parameters on each section were obtained as well as the overall performance of the radial IC, and the causes of the flow loss inside the IC and the non-uniformity of flow parameters at the outlet section were investigated. Besides, numerical simulations were performed to further analyze the flow characteristics inside the radial IC. The experimental and numerical results indicate that, in the scheme without guide vanes, sudden expansions in the spiral channel and flow separations in the annular convergence channel are the major sources of flow loss and distortions generated in the radial IC; while in the scheme with guide vanes, the flow impacts, separations and wakes caused by the inappropriate design of guide vanes are the main reasons for the flow loss of the IC itself and the uneven flow distributions at the IC outlet.


1991 ◽  
Vol 113 (4) ◽  
pp. 696-702 ◽  
Author(s):  
C. Rodgers

This paper describes the results of compressor rig testing with a moderately high specific speed, high inducer Mack number, single-stage centrifugal compressor, with a vaned diffuser, and adjustable inlet guide vanes (IGVs). The results showed that the high-speed surge margin was considerably extended by the regulation of the IGVs, even though the vaned diffuser was apparently operating stalled. Simplified one-dimensional analysis of the impeller and diffuser performances indicated that at inducer tip Mach numbers approaching and exceeding unity, the high-speed surge line was triggered by inducer stall. Also, IGV regulation increased impeller stability. This permitted the diffuser to operate stalled, providing the net compression system stability remained on a negative slope.


2017 ◽  
Author(s):  
Michele Becciani ◽  
Alessandro Bianchini ◽  
Matteo Checcucci ◽  
Lorenzo Ferrari ◽  
Michele De Luca ◽  
...  

Author(s):  
J. W. Salvage

Higher noise levels resulted when a compressor was scaled to larger capacity. The machine’s sound pressure level was relieved by increasing the distance between the impeller blade tip and diffuser leading edge. However, the part-load surge line deteriorated severely as a consequence. A variable geometry pipe diffuser solved this problem, permitting operation at stringent off-design conditions. The addition of a variable diffuser permits compressor selection very near its most efficient full-load operating point, without regard for limitations normally imposed by part-load requirements. The principal lessons learned during aerodynamic design refinement include (a) how performance and surge depend upon positioning the variable inlet guide vanes and variable diffuser, and (b) how to define simultaneous variation of inlet guide vanes and diffuser for specific operational objectives. Generally, each operating point requires a unique setting of the variable components to achieve maximum efficiency. However, linked movement is shown to yield both a satisfactory surge line and improved performance for most applications when compared to a compressor without the variable geometry pipe diffuser.


Author(s):  
Yubao Tian ◽  
Yonghong Tang ◽  
Zhiheng Wang ◽  
Guang Xi

A shrouded centrifugal compressor model stage used for 120,000 m3/h oxygen production air separation unit was designed and tested at several IGV stagger angles from −15° to +60° and machine Mach number from 0.97 to 0.5. Present research works aimed to assess the influence of the adjustable IGVs and the IGV modeling on the shrouded centrifugal compressor performance characteristics and inlet flow field and to explore the effect factors of the CFD prediction accuracy and compressor stability at different IGV stagger angles. The measured results show that the model stage with 0° IGV stagger angle yields almost the same stagnation pressure ratio performance as the stage-only model but at a lower peak isentropic efficiency. With an appropriate IGV stagger angle setting ranging from −15° to +30°, the compressor stability could be efficiently enhanced. Numerical studies indicate that a large IGV hub gap may lead to a significant lag effect on the flow angle generated by the inlet guide vanes when increasing the IGV stagger angle.


Sign in / Sign up

Export Citation Format

Share Document