Forecasting the future scale of vehicle to grid technology for electric vehicles and its economic value as future electric energy source: The case of South Korea

2020 ◽  
Vol 31 (8) ◽  
pp. 1350-1366 ◽  
Author(s):  
Keumju Lim ◽  
Justine Jihyun Kim ◽  
Jongsu Lee

With the world seeking ways to cope with climate change, the interest in and demand for electric vehicles are increasing as part of the efforts to resolve the issue of fine dust, especially in South Korea. The Korean government has consistently announced plans to promote electric vehicles as a means of transportation by providing benefits such as subsidies for electric vehicle purchase and expansion of charging infrastructure. Meanwhile, as electric vehicles continue to grow in number, the energy industry has become attentive to its role as a resource for power generation through vehicle to grid technology. This study analyzes electric vehicle consumer preferences using the discrete choice experiment (DCE) and found that there exists a clear nested structure in Korean consumers’ choice of vehicle. The study also estimates the amount of vehicle to grid electricity supply in the power market and calculates not only national but also individual economic benefit of electric vehicle owners participating in vehicle to grid services based on the estimated amount of electricity supplied. The results of scenario analysis indicate that the estimated electric vehicle supply in Korea will be about 560,000 units cumulatively and that the vehicle to grid electric vehicle power supply scale will reach 1.81 GW by 2030. The estimation shows that the economic benefit of vehicle to grid at the national power market level is 50.9 billion KRW per year, while the economic benefit at an individual level (per vehicle) is 104,151 KRW.

Author(s):  
Mr. Akshay A. Khandare

Abstract: The increasing mobility of electric vehicles has inspired vehicle growth to power grid technology. Such as vehicle to grid technology allows to transfer the power from the electric vehicle battery to the power grid. This enable speak load shaving, load leveling, voltage regulation, and improved stability of the power system. To develop the vehicle to grid technology requires a specialized EV battery charger, which permits the bi-directional energy transfer between the power grid and the electric vehicle battery. There is a specific control strategy used for a bi-directional battery charger. The proposed control strategy is used for charge and discharge battery of EV. The charger strategy has two parts: 1) Bidirectional AC-DC Converter in two-way Communication System. 2) Bidirectional DC-DC Buck-Boost Converter. There are two modes of operation for a bidirectional ac-dc converter: for G2V, rectifying mode is used, and for V2G, inverter mode is used. The suggested charge strategy not only allows for two-directional power flow but also provides power quality management of the power grid. Fuzzy logic controller (FLC) transforms linguistic control topology evaluations knowledge into an automated control topology using FLC. The FLC is more stable, has less overshoot, and responds quickly. The operation of a standard PI controller and a FLC was compared in this study using MATLAB and Simulink, and different time domain characteristics were compared as toshow that the FLC had a smaller overshoot and a faster response than the PI controller. Keywords: Bi-directional AC-DC converter, bi-directional DC-DC Buck-Boost converter, electric vehicles (EVs), on-board battery charger (OBC), grid to vehicle (G2V), vehicle to grid (V2G).


2016 ◽  
Vol 7 (2) ◽  
pp. 596-607 ◽  
Author(s):  
Carlos Sabillon Antunez ◽  
John F. Franco ◽  
Marcos J. Rider ◽  
Ruben Romero

2020 ◽  
Vol 12 (14) ◽  
pp. 5571
Author(s):  
Anastasia Gorbunova ◽  
Ilya Anisimov ◽  
Elena Magaril

The energy industry is a leader of introduction and development of energy supply technologies from renewable energy sources. However, there are some disadvantages of these energy systems, namely, the low density and inconsistent nature of the energy input, which leads to an increase in the cost of the produced electric energy in comparison to the traditional energy complexes using hydrocarbon fuel resources. Therefore, the smart grid technology based on preliminary calculation parameters of the energy system develops in cities. This area should also be used to organize the charging infrastructure of electric vehicles, as the electrification of road transport is one of the global trends. As a result, a current task of the transport and energy field is the development of scientifically based approaches to the formation of the urban charging infrastructure for electric vehicles. The purpose of the article is to identify the features of the application flow formation for the charge of the electric vehicle battery. The results obtained provide a basis for building a simulation model for determining the required number of charging stations in the city, taking into account the criteria of minimizing operating costs for electric vehicle owners and energy companies.


Author(s):  
VARUN. M ◽  
CHAITRA KUMAR

Electric vehicles are the transportation machines which uses electric energy as power source for movement. The objective of this technical journal is to propose an idea to solve the electric automobile problems which are causing the backlog for sales and demand of electric automobiles in the Indian market. This is a technical journal consisting of a case study of electric vehicle problems in India, applications and advantages of electric vehicles, simple analysis of problems one by one based on common thinking abilities, disadvantages in electric vehicles, discussion of preferable solutions for the electric vehicle problems and its disadvantages, field survey, listing the situation in order systematically, different types of batteries that can be used, motors that can be preferred for electric automobiles, preferred solution discussion including result discussion with an example of electric automobile and finally conclusions. We have discussed on batteries and motors that are suitable for electric vehicles. We have tried to solve the problems of electric vehicles after listing the problems that can be faced in electric vehicles one by one. The main concept of this paper is having the battery exchange stations to exchange the charge dried batteries to fully charged batteries. In battery exchange stations, a customer using electric vehicles should pay some amount and can exchange his used batteries to fully charged batteries. We have discussed the way of working of battery exchange stations. Hydrogen fuel cell concepts are also detailed in this paper.


Energies ◽  
2018 ◽  
Vol 11 (9) ◽  
pp. 2400 ◽  
Author(s):  
Stavros Lazarou ◽  
Vasiliki Vita ◽  
Christos Christodoulou ◽  
Lambros Ekonomou

The connection of electric vehicles to distribution networks has been an emerging issue of paramount importance for power systems. On one hand, it provides new opportunities for climate change mitigation, if electric energy used for charging is produced from zero emission sources. On the other hand, it stresses networks that are now required to accommodate, in addition to the loads and production from distributed generation they are initially designed for, loads from electric vehicles charging. In order to achieve maximum use of the grid without substantially affecting its performance, these issues have to be addressed in a coordinated manner, which requires adequate knowledge of the system under consideration. It is advantageous that electric vehicle charging can be controlled to a certain degree. This research provides better understanding of real distribution networks’ operation, proposing specific operational points through minimizing electric vehicle charging effects. The probabilistic Monte Carlo method on high performance computers is used for the calculations.


Sign in / Sign up

Export Citation Format

Share Document