The rise of community choice aggregation and its implications for California’s energy transition: A preliminary assessment

2020 ◽  
pp. 0958305X2092738
Author(s):  
Sean F Kennedy ◽  
Bailey Rosen

Community choice aggregation—an emerging electricity supply model allowing residents and businesses to purchase electricity from local governments instead of utilities—is projected to account for 60% of Californian customers currently served by investor-owned utilities by 2020.Community choice aggregation advocates claim that the model is an effective means of meeting California’s renewable energy policy objectives in a way that is more democratic and socially just than the prevailing utility-based model of electricity governance. We interrogate these claims through a focus on three issues: community choice aggregation governance and access to capital, electricity procurement, and customer rates and retention. We find that community choice aggregators have been able to address concerns regarding access to capital while balancing competing objectives around renewable energy and affordability. However, local benefits—particularly in terms of local economic development driven by the expansion of distributed generation—are yet to be fully realized. In addition, ongoing policy uncertainty regarding cost allocation between utility and community choice aggregation customers may limit the ability of community choice aggregators to offer competitive rates, which may threaten the model’s long-term viability. We conclude by arguing that meeting California’s future renewable energy requires a reconfiguration of the regulatory framework that leverages the respective strengths of both community choice aggregators and investor-owned utilities in the context of the state’s energy transition.

2015 ◽  
Vol 3 (2) ◽  
pp. 34-50 ◽  
Author(s):  
Karoline Steinbacher

Given the tremendous energy challenges Morocco faces, and its potential role as an exporter of green electricity to Europe, the country has been particularly targeted by Germany’s efforts to promote the uptake of renewable energies abroad. This paper explores whether ideas and policies in the field of renewable energy effectively traveled through transfer channels established between Germany and Morocco. In particular, the question of how Morocco’s policy objectives shaped the result of transfer processes is discussed, shedding light on a currently under-researched determinant for policy transfer. Drawing upon forty-five semi-structured interviews with Moroccan, German, and international stakeholders, as well as card-ranking exercises, the article provides first-hand insights into the dynamics and drivers of Morocco’s “energy transition”. Findings presented in the article show that differing policy objectives did not preclude the transfer of ideas between Germany and Morocco, but shaped its outcome with regard to policy instrument selection. While basic policy orientations in favour of renewable energies were facilitated by transferred knowledge, a perceived incompatibility between domestic policy objectives and the policy instruments used in the foreign model led to selective lesson-drawing from the German example. This finding underlines the importance for “senders” who wish to actively promote sustainable energy policies abroad to adapt outreach strategies to the policy objectives of potential followers.


2020 ◽  
Vol 9 (5) ◽  
pp. 324
Author(s):  
Jiaao Guo ◽  
Victoria Fast ◽  
Philip Teri ◽  
Kirby Calvert

Land-based, utility-scale renewable energy (RE) systems using wind or solar resources to generate electricity is becoming a decisive solution to meet long-term carbon emission reduction goals. Local governments are responding in kind, by adopting their own goals and/or establishing policies to facilitate successful implementations of RE in their jurisdiction. One factor to successful RE development is to locate the most suitable lands, while continuing to sustain land-based economies and ecosystem services. Local governments often have limited resources; and this is especially true for small, land-constrained local governments. In this paper, we illustrate how a standardized RE technical mapping framework can be used by local governments to advance the implementation of RE in land-constrained areas, through a case study in the Town of Canmore, Alberta. Canmore has a limited municipal area surrounded by the Canadian Rockies, along with complex land-use bylaw and environmentally sensitive habitats. This mapping framework accounts for these conditions as it considers theoretical resources, technically recoverable lands, legally accessible lands, and the spatial capital cost of connecting new RE facilities. Different land-use planning scenarios are considered including changing setback buffers and expanding restrictions on development to all environmentally sensitive districts. The total RE potentials are then estimated based on the least-conflict lands. Technically speaking, even under restrictive land suitability scenarios, Canmore holds enough land to achieve ambitious RE targets, but opportunities and challenges to implementation remain. To eventually succeed in its long-term emission reduction goal, the most decisive step for Canmore is to balance the growth of energy demands, land-use changes, and practicable RE development. Mapping systems that can study the influence of land-use planning decisions on RE potential are critical to achieving this balance.


Energies ◽  
2019 ◽  
Vol 12 (16) ◽  
pp. 3046 ◽  
Author(s):  
Ole Zelt ◽  
Christine Krüger ◽  
Marina Blohm ◽  
Sönke Bohm ◽  
Shahrazad Far

In recent years, most countries in the Middle East and North Africa (MENA), including Jordan, Morocco and Tunisia, have rolled out national policies with the goal of decarbonising their economies. Energy policy goals in these countries have been characterised by expanding the deployment of renewable energy technologies in the electricity mix in the medium term (i.e., until 2030). This tacitly signals a transformation of socio-technical systems by 2030 and beyond. Nevertheless, how these policy objectives actually translate into future scenarios that can also take into account a long-term perspective up to 2050 and correspond to local preferences remains largely understudied. This paper aims to fill this gap by identifying the most widely preferred long-term electricity scenarios for Jordan, Morocco and Tunisia. During a series of two-day workshops (one in each country), the research team, along with local stakeholders, adopted a participatory approach to develop multiple 2050 electricity scenarios, which enabled electricity pathways to be modelled using Renewable Energy Pathway Simulation System GIS (renpassG!S). We subsequently used the Analytical Hierarchy Process (AHP) within a Multi-Criteria Analysis (MCA) to capture local preferences. The empirical findings show that local stakeholders in all three countries preferred electricity scenarios mainly or even exclusively based on renewables. The findings demonstrate a clear preference for renewable energies and show that useful insights can be generated using participatory approaches to energy planning.


Energies ◽  
2021 ◽  
Vol 14 (9) ◽  
pp. 2558
Author(s):  
Askar A. Akaev ◽  
Olga I. Davydova

On 4 November 2016, the historic Paris Climate Agreement of the United Nations entered into force, requiring signatory countries to maintain global warming at the level of 1.5–2 °C. According to the calculations of the Intergovernmental Panel on Climate Change (IPCC), to achieve this goal, a 2/3 reduction in greenhouse gas energy emissions into the atmosphere compared with gaseous energy-related emissions in 2019 (33.3 Gt) by about 2050 (1.5 °C) or by 2070 (2 °C) is required. According to the International Renewable Energy Agency (IRENA), this is only possible with the implementation of a great energy transition from the use of currently dominant fossil hydrocarbon fuels—coal, oil, and natural gas—to the predominant use of renewable energy sources (RES) by 2040–2050, when the share of renewable energy in the total energy balance will reach 40% and above. In this work, mathematical description of an upcoming energy transition has been carried out, including long-term scenario writing of the world’s demographic dynamics and global energy demand, calculation of the dynamics of industrial CO2 emissions and CO2 accumulation in the Earth’s atmosphere, as well as the corresponding changes in the average global temperature of the Earth’s surface in the 21st century. A mathematical description of the impact of energy consumption on climate change was carried out taking into account long-term trends in the dynamics of energy consumption. Using the performed mathematically-oriented scenario writing, it is suggested that a great energy transition with the achievement of the goals of the Paris Agreement is possible only by 2060. Renewable energy could sufficiently displace and replace hydrocarbon fuels to achieve climate safety without compromising economic development. As a result, humanity will receive an environmentally friendly decentralized distributed energy system, connected by «smart» grids, controlled by intelligent digital technologies.


2018 ◽  
Author(s):  
Moza Salim Al Naimi ◽  
Mohamed I. Hassan Ali ◽  
Gento Mogi

Sustainable energy transition requires a critical prediction for the long-term evolvement of energy systems around the world. It is affected by several factors: the changes in the oil economy, the climate change, and the development of renewable energy supply technologies. The aim of this research is to compare and analyze Abu Dhabi’s generation sector in its transition from complete conventional gas to a mix of conventional and Photovoltaic (PV) energy systems. Employing a Mixed Integer Linear Program (MILP) and PLEXOS software, two capacity expansion scenarios of Abu Dhabi’s generation sector for five years are optimized, analyzed, and compared using a real data from the generation and demand sides. This research means to highlight, to the UAE government, the effect of introducing more renewable energy and to evaluate the performance of the generation side in meeting the forecasted demand. Furthermore, this work opens the doors wide for further development and optimization in the GCC area.


2021 ◽  
Vol 43 (1) ◽  
pp. 75-81
Author(s):  
T.A. Zheliezna

The aim of the work is to develop recommendations for Ukraine on setting long-term integrated climate and energy goals and identifying ways to achieve them. The preconditions, main goals and objectives of the European Green Deal, which was presented by the European Commission in December 2019, are analyzed. The European Green Deal is a comprehensive strategy for the transition to a sustainable economy, clean energy and climate neutrality, i.e., zero greenhouse gas emissions, in Europe by 2050. The adoption of this Deal was preceded by several stages of a coherent EU policy in the relevant sectors. Possibilities for renewable energy development within the framework of the European Green Deal are considered. It is determined that preference is given to the production of green electricity, mobilization of the potential of offshore renewable energy, production of biogas and biofuels from biomass of agricultural origin, sustainable use of low-carbon and renewable fuels, including biomass and hydrogen, in hard-to-electricity sectors. In Ukraine, the document that is closest by its contents to the European Green Deal is the draft Concept of green energy transition until 2050 presented in January 2020. The draft Concept states the goal of achieving 70% of renewable energy sources in electricity generation by 2050 and the climate-neutral economy of Ukraine by 2070. It is recommended that this document should be finalized and adopted formally as soon as possible.


Sign in / Sign up

Export Citation Format

Share Document