scholarly journals A Mathematical Description of Selected Energy Transition Scenarios in the 21st Century, Intended to Realize the Main Goals of the Paris Climate Agreement

Energies ◽  
2021 ◽  
Vol 14 (9) ◽  
pp. 2558
Author(s):  
Askar A. Akaev ◽  
Olga I. Davydova

On 4 November 2016, the historic Paris Climate Agreement of the United Nations entered into force, requiring signatory countries to maintain global warming at the level of 1.5–2 °C. According to the calculations of the Intergovernmental Panel on Climate Change (IPCC), to achieve this goal, a 2/3 reduction in greenhouse gas energy emissions into the atmosphere compared with gaseous energy-related emissions in 2019 (33.3 Gt) by about 2050 (1.5 °C) or by 2070 (2 °C) is required. According to the International Renewable Energy Agency (IRENA), this is only possible with the implementation of a great energy transition from the use of currently dominant fossil hydrocarbon fuels—coal, oil, and natural gas—to the predominant use of renewable energy sources (RES) by 2040–2050, when the share of renewable energy in the total energy balance will reach 40% and above. In this work, mathematical description of an upcoming energy transition has been carried out, including long-term scenario writing of the world’s demographic dynamics and global energy demand, calculation of the dynamics of industrial CO2 emissions and CO2 accumulation in the Earth’s atmosphere, as well as the corresponding changes in the average global temperature of the Earth’s surface in the 21st century. A mathematical description of the impact of energy consumption on climate change was carried out taking into account long-term trends in the dynamics of energy consumption. Using the performed mathematically-oriented scenario writing, it is suggested that a great energy transition with the achievement of the goals of the Paris Agreement is possible only by 2060. Renewable energy could sufficiently displace and replace hydrocarbon fuels to achieve climate safety without compromising economic development. As a result, humanity will receive an environmentally friendly decentralized distributed energy system, connected by «smart» grids, controlled by intelligent digital technologies.

2020 ◽  
Vol 12 (11) ◽  
pp. 4558
Author(s):  
Yuliia Matiiuk ◽  
Mykolas Simas Poškus ◽  
Genovaitė Liobikienė

Contribution to climate change mitigation is required for all world countries. Post-Soviet countries’ climate change policy strategies by 2030 (2035) were adopted relatively recently. Thus, the aim of this study is to analyze the achievements of climate change policy, encompassing carbon emissions, energy intensity, and renewable energy consumption, in separate Post-Soviet countries and to reveal the possibilities of reaching their long-term 2030–2035 targets. The results showed huge differences in carbon emissions, energy intensity, and the share of renewable energy consumption among Post-Soviet countries. Analyzing the trends of climate change policy implementation in almost all Post-Soviet countries (except Ukraine and Uzbekistan), carbon pollution increased during the analyzed period (2002–2014). The highest growth of emissions was observed in Georgia and Tajikistan. Furthermore, the economic development level was positively and significantly related to the level of carbon emissions. During the 2002–2014 period, energy intensity decreased in all Post-Soviet countries, particularly in those where the level was lower. The share of renewable energy consumption increased the most in countries that are members of the EU (Latvia, Lithuania, and Estonia) and Moldova, which declared its willingness to join the EU. However, the energy intensity and the share of renewable energy consumption were insignificantly related to the level of economic development. Analyzing the possibility of achieving the Post-Soviet countries’ climate change policy targets, the results showed that only some of them will succeed. Therefore, Post-Soviet countries should implement more efficient climate change policies and effective tools in order to achieve their targets.


2020 ◽  
Vol 13 (1) ◽  
pp. 305
Author(s):  
W.J. Wouter Botzen ◽  
Tim Nees ◽  
Francisco Estrada

Fixed effects panel models are used to estimate how the electricity and gas consumption of various sectors and residents relate to temperature in Mexico, while controlling for the effects of income, manufacturing output per capita, electricity and gas prices and household size. We find non-linear relationships between energy consumption and temperature, which are heterogeneous per state. Electricity consumption increases with temperature, and this effect is stronger in warm states. Liquified petroleum gas consumption declines with temperature, and this effect is slightly stronger in cold states. Extrapolations of electricity and gas consumption under a high warming scenario reveal that electricity consumption by the end of the century for Mexico increases by 12%, while gas consumption declines with 10%, resulting in substantial net economic costs of 43 billion pesos per year. The increase in net energy consumption implies greater efforts to comply with the mitigation commitments of Mexico and requires a much faster energy transition and substantial improvements in energy efficiency. The results suggest that challenges posed by climate change also provide important opportunities for advancing social sustainability goals and the 2030 Agenda for Sustainable Development. This study is part of Mexico’s Sixth National Communication to the United Nations Framework Convention on Climate Change.


Energies ◽  
2021 ◽  
Vol 14 (15) ◽  
pp. 4402
Author(s):  
Chun-Kai Wang ◽  
Chien-Ming Lee ◽  
Yue-Rong Hong ◽  
Kan Cheng

Energy transition has become a priority for adaptive policy and measures taken in response to climate change around the world. This is an opportunity and a challenge for the Taiwan government to establish a climate-resilient power generation mixed to ensure electricity security as well as climate change mitigation. This study adopted a sustainable development perspective and applied optimal control theory to establish a cost-effective model to evaluate a long-term (2050), climate-resilient power generation mix for Taiwan. Furthermore, this study applies the STIRPAT approach to predict the demand of electricity by 2050 for the demand side management. The results not only showed the share of various power generation mixed, but also recommended the trajectory of electricity saving by 2050.


2017 ◽  
Vol 56 (10) ◽  
pp. 2869-2881
Author(s):  
Janel Hanrahan ◽  
Alexandria Maynard ◽  
Sarah Y. Murphy ◽  
Colton Zercher ◽  
Allison Fitzpatrick

AbstractAs demand for renewable energy grows, so does the need for an improved understanding of renewable energy sources. Paradoxically, the climate change mitigation strategy of fossil fuel divestment is in itself subject to shifts in weather patterns resulting from climate change. This is particularly true with solar power, which depends on local cloud cover. However, because observed shortwave radiation data usually span a decade or less, persistent long-term trends may not be identified. A simple linear regression model is created here using diurnal temperature range (DTR) during 2002–15 as a predictor variable to estimate long-term shortwave radiation (SR) values in the northeastern United States. Using an extended DTR dataset, SR values are computed for 1956–2015. Statistically significant decreases in shortwave radiation are identified that are dominated by changes during the summer months. Because this coincides with the season of greatest insolation and the highest potential for energy production, financial implications may be large for the solar energy industry if such trends persist into the future.


2015 ◽  
Vol 73 (5) ◽  
pp. 1357-1369 ◽  
Author(s):  
Jose A. Fernandes ◽  
Susan Kay ◽  
Mostafa A. R. Hossain ◽  
Munir Ahmed ◽  
William W. L. Cheung ◽  
...  

Abstract The fisheries sector is crucial to the Bangladeshi economy and wellbeing, accounting for 4.4% of national gross domestic product and 22.8% of agriculture sector production, and supplying ca. 60% of the national animal protein intake. Fish is vital to the 16 million Bangladeshis living near the coast, a number that has doubled since the 1980s. Here, we develop and apply tools to project the long-term productive capacity of Bangladesh marine fisheries under climate and fisheries management scenarios, based on downscaling a global climate model, using associated river flow and nutrient loading estimates, projecting high-resolution changes in physical and biochemical ocean properties, and eventually projecting fish production and catch potential under different fishing mortality targets. We place particular interest on Hilsa shad (Tenualosa ilisha), which accounts for ca. 11% of total catches, and Bombay duck (Harpadon nehereus), a low price fish that is the second highest catch in Bangladesh and is highly consumed by low-income communities. It is concluded that the impacts of climate change, under greenhouse emissions scenario A1B, are likely to reduce the potential fish production in the Bangladesh exclusive economic zone by <10%. However, these impacts are larger for the two target species. Under sustainable management practices, we expect Hilsa shad catches to show a minor decline in potential catch by 2030 but a significant (25%) decline by 2060. However, if overexploitation is allowed, catches are projected to fall much further, by almost 95% by 2060, compared with the Business as Usual scenario for the start of the 21st century. For Bombay duck, potential catches by 2060 under sustainable scenarios will produce a decline of <20% compared with current catches. The results demonstrate that management can mitigate or exacerbate the effects of climate change on ecosystem productivity.


2021 ◽  
Vol 09 (12) ◽  
pp. 151-167
Author(s):  
Usman Bello ◽  
Livingstone Udofia ◽  
Olayinka A. Ibitowa ◽  
Auwal M. Abdullahi ◽  
Ibrahim Sulaiman ◽  
...  

Author(s):  
Carlos V C Weiss ◽  
Melisa Menendez ◽  
Bárbara Ondiviela ◽  
Raúl Guanche ◽  
Iñigo J Losada ◽  
...  

Abstract The development of the marine renewable energy and offshore aquaculture sectors is susceptible to being affected by climate change. Consequently, for the long-term planning of these activities, a holistic view on the effects of climate change on energy resources and environmental conditions is required. Based on present climate and future climate scenario, favourable conditions for wind and wave energy exploitation and for farming six marine fish species are assessed using a suitability index over all European regional seas. Regarding available energy potential, the estimated changes in climate do not have direct impacts on the geographic distribution of potential regions for the energy industry (both wind and wave based), that is they pose no threat to this industry. Long-term changes in environmental conditions could however require adaptation of the aquaculture sector and especially of its exploitation areas. Opportunities for aquaculture expansion of the assessed species are identified. Possibilities for co-location of these activities are observed in the different climate scenarios. The evaluation of potential zones for the exploitation of marine renewable energy resources and offshore aquaculture represents a stepping-stone, useful for improving decision-making and assisting in the management of marine economies both in the short-term and in the long-term development of these sectors.


Agronomy ◽  
2019 ◽  
Vol 9 (7) ◽  
pp. 397 ◽  
Author(s):  
Giovanni Sgubin ◽  
Didier Swingedouw ◽  
Iñaki García de Cortázar-Atauri ◽  
Nathalie Ollat ◽  
Cornelis van Leeuwen

A comprehensive analysis of all the possible impacts of future climate change is crucial for strategic plans of adaptation for viticulture. Assessments of future climate are generally based on the ensemble mean of state-of-the-art climate model projections, which prefigures a gradual warming over Europe for the 21st century. However, a few models project single or multiple O(10) year temperature drops over the North Atlantic due to a collapsing subpolar gyre (SPG) oceanic convection. The occurrence of these decadal-scale “cold waves” may have strong repercussions over the continent, yet their actual impact is ruled out in a multi-model ensemble mean analysis. Here, we investigate these potential implications for viticulture over Europe by coupling dynamical downscaled EUR-CORDEX temperature projections for the representative concentration pathways (RCP)4.5 scenario from seven different climate models—including CSIRO-Mk3-6-0 exhibiting a SPG convection collapse—with three different phenological models simulating the main developmental stages of the grapevine. The 21st century temperature increase projected by all the models leads to an anticipation of all the developmental stages of the grapevine, shifting the optimal region for a given grapevine variety northward, and making climatic conditions suitable for high-quality wine production in some European regions that are currently not. However, in the CSIRO-Mk3-6-0 model, this long-term warming trend is suddenly interrupted by decadal-scale cold waves, abruptly pushing the suitability pattern back to conditions that are very similar to the present. These findings are crucial for winemakers in the evaluation of proper strategies to face climate change, and, overall, provide additional information for long-term plans of adaptation, which, so far, are mainly oriented towards the possibility of continuous warming conditions.


2016 ◽  
Vol 9 (9) ◽  
pp. 3461-3482 ◽  
Author(s):  
Brian C. O'Neill ◽  
Claudia Tebaldi ◽  
Detlef P. van Vuuren ◽  
Veronika Eyring ◽  
Pierre Friedlingstein ◽  
...  

Abstract. Projections of future climate change play a fundamental role in improving understanding of the climate system as well as characterizing societal risks and response options. The Scenario Model Intercomparison Project (ScenarioMIP) is the primary activity within Phase 6 of the Coupled Model Intercomparison Project (CMIP6) that will provide multi-model climate projections based on alternative scenarios of future emissions and land use changes produced with integrated assessment models. In this paper, we describe ScenarioMIP's objectives, experimental design, and its relation to other activities within CMIP6. The ScenarioMIP design is one component of a larger scenario process that aims to facilitate a wide range of integrated studies across the climate science, integrated assessment modeling, and impacts, adaptation, and vulnerability communities, and will form an important part of the evidence base in the forthcoming Intergovernmental Panel on Climate Change (IPCC) assessments. At the same time, it will provide the basis for investigating a number of targeted science and policy questions that are especially relevant to scenario-based analysis, including the role of specific forcings such as land use and aerosols, the effect of a peak and decline in forcing, the consequences of scenarios that limit warming to below 2 °C, the relative contributions to uncertainty from scenarios, climate models, and internal variability, and long-term climate system outcomes beyond the 21st century. To serve this wide range of scientific communities and address these questions, a design has been identified consisting of eight alternative 21st century scenarios plus one large initial condition ensemble and a set of long-term extensions, divided into two tiers defined by relative priority. Some of these scenarios will also provide a basis for variants planned to be run in other CMIP6-Endorsed MIPs to investigate questions related to specific forcings. Harmonized, spatially explicit emissions and land use scenarios generated with integrated assessment models will be provided to participating climate modeling groups by late 2016, with the climate model simulations run within the 2017–2018 time frame, and output from the climate model projections made available and analyses performed over the 2018–2020 period.


Sign in / Sign up

Export Citation Format

Share Document