Disturbance rejection control for attitude control of air-breathing hypersonic vehicles with actuator dynamics

Author(s):  
Xianlei Cheng ◽  
Peng Wang ◽  
Luhua Liu ◽  
Guojian Tang
2019 ◽  
Vol 2019 ◽  
pp. 1-20 ◽  
Author(s):  
Chenyang Xu ◽  
Humin Lei ◽  
Na Lu

Aiming at the longitudinal motion model of the air-breathing hypersonic vehicles (AHVs) with parameter uncertainties, a new prescribed performance-based active disturbance rejection control (PP-ADRC) method was proposed. First, the AHV model was divided into a velocity subsystem and altitude system. To guarantee the reliability of the control law, the design process was based on the nonaffine form of the AHV model. Unlike the traditional prescribed performance control (PPC), which requires accurate initial tracking errors, by designing a new performance function that does not depend on the initial tracking error and can ensure the small overshoot convergence of the tracking error, the error convergence process can meet the desired dynamic and steady-state performance. Moreover, the designed controller combined with an active disturbance rejection control (ADRC) and extended state observer (ESO) further enhanced the disturbance rejection capability and robustness of the method. To avoid the differential expansion problem and effectively filter out the effects of input noise in the differential signals, a new tracking differentiator was proposed. Finally, the effectiveness of the proposed method was verified by comparative simulations.


2011 ◽  
Vol 383-390 ◽  
pp. 358-365 ◽  
Author(s):  
Fu Lin Teng ◽  
Hong Yu Ge ◽  
Hong Sheng Li ◽  
Jian Hua Zhang

Modern spacecraft demands from an attitude control system very high performance and accuracy, and many new features, such as disturbance rejection capability. The recently developed active disturbance rejection control technology is applied to the attitude control of spacecraft subject to disturbances and parametric uncertainties. Simulation and experiment show significant advantages of the proposed attitude controller over the controller resulting from conventional PID approach.


2013 ◽  
Vol 404 ◽  
pp. 603-608
Author(s):  
Qing Bo Wu ◽  
Fu Yang Chen ◽  
Chang Yun Wen

In this paper, a self-repairing control scheme for attitude control of a quadrotor helicopter via active disturbance rejection control is proposed. Firstly, a model of the quadrotor helicopter is gained by its dynamic equations with pitch, roll and yaw axis. Then the active disturbance rejection controller is introduced, which is used to design the control system. The control system consists of PID controller in inner-loop and ADRC controller in outer-loop. Disturbances and uncertainties can be compensated by the ADRC to achieve smaller tracking error. Finally, the simulation results of the four-rotor helicopter validate the efficiency and self-repairing capability of the proposed control algorithm, compared with that of the PID control and the separate ADRC control.


Sign in / Sign up

Export Citation Format

Share Document