Design and real-time implementation of a decentralized sliding mode controller for twin rotor multi-input multi-output system

Author(s):  
Farah Faris ◽  
Abdelkrim Moussaoui ◽  
Boukhetala Djamel ◽  
Tadjine Mohammed

The article deals with a real-time implementation of a decentralized sliding mode controller applied to a twin rotor multi-input multi-output system, a system with 2 degrees of freedom, strongly coupled and its dynamic resembles that of a helicopter. The work is motivated by the fact that in the literature several control techniques have been proposed for the twin rotor multi-input multi-output system control without being applied to the system, and the considered authors presented just the simulation results. To control the vertical and horizontal positions of the twin rotor multi-input multi-output system, the system is decoupled into two subsystems, vertical and horizontal, controlled by two independent sliding mode regulators calculated from the mathematical models of vertical and horizontal subsystems, respectively. From the results of real-time control of the twin rotor multi-input multi-output system in stabilization and tracking modes, and performing robustness and disturbance rejection tests, the effectiveness of the suggested control scheme was proven.

2009 ◽  
Vol 42 (17) ◽  
pp. 346-351
Author(s):  
M. DJEMAI ◽  
K. BUSAWON ◽  
K. BENMANSOUR ◽  
A. MAROUF

2001 ◽  
Author(s):  
Tamás Kalmár-Nagy ◽  
Pritam Ganguly ◽  
Raffaello D’Andrea

Abstract In this paper, we discuss an innovative method of generating near-optimal trajectories for a robot with omni-directional drive capabilities, taking into account the dynamics of the actuators and the system. The relaxation of optimality results in immense computational savings, critical in dynamic environments. In particular, a decoupling strategy for each of the three degrees of freedom of the vehicle is presented, along with a method for coordinating the degrees of freedom. A nearly optimal trajectory for the vehicle can typically be calculated in less than 1000 floating point operations, which makes it attractive for real-time control in dynamic and uncertain environments.


2018 ◽  
Vol 15 (2) ◽  
pp. 192-204 ◽  
Author(s):  
Arpit Jain ◽  
Satya Sheel ◽  
Piyush Kuchhal

Purpose The purpose of this paper is to study the application of entropy based optimized fuzzy logic control for a real-time non-linear system. Optimization of the fuzzy membership function (MF) is one of the most explored areas for performance improvement of the fuzzy logic controllers (FLC). Conversely, majority of previous works are motivated on choosing an optimized shape for the MF, while on the other hand the support of fuzzy set is not accounted. Design/methodology/approach The proposed investigation provides the optimal support for predefined MFs by using genetic algorithms-based optimization of fuzzy entropy-based objective function. Findings The experimental results obtained indicate an improvement in the performance of the controller which includes improvement in error indices, transient and steady-state parameters. The applicability of proposed algorithm has been verified through real-time control of the twin rotor multiple-input, multiple-output system (TRMS). Research limitations/implications The proposed algorithm has been used for the optimization of triangular sets, and can also be used for the optimization of other fussy sets, such as Gaussian, s-function, etc. Practical implications The proposed optimization can be combined with other algorithms which optimize the mathematical function (shape), and a potent optimization tool for designing of the FLC can be formulated. Originality/value This paper presents the application of a new optimized FLC which is tested for control of pitch and yaw angles in a TRMS. The performance of the proposed optimized FLC shows significant improvement when compared with standard references.


2020 ◽  
Author(s):  
Gang Liu ◽  
Lu Wang ◽  
Jing Wang

Myoelectric prosthetic hands create the possibility for amputees to control their prosthetics like native hands. However, user acceptance of the extant myoelectric prostheses is low. Unnatural control, lack of sufficient feedback, and insufficient functionality are cited as primary reasons. Recently, although many multiple degrees-of-freedom (DOF) prosthetic hands and tactile-sensitive electronic skins have been developed, no non-invasive myoelectric interfaces can decode both forces and motions for five-fingers independently and simultaneously. This paper proposes a myoelectric interface based on energy allocation and fictitious forces hypothesis by mimicking the natural neuromuscular system. The energy-based interface uses a kind of continuous “energy mode” in the level of the entire hand. According to tasks itself, each energy mode can adaptively and simultaneously implement multiple hand motions and exerting continuous forces for a single finger. Also, a few learned energy modes could extend to the unlearned energy mode, highlighting the extensibility of this interface. We evaluate the proposed system through off-line analysis and operational experiments performed on the expression of the unlearned hand motions, the amount of finger energy, and real-time control. With active exploration, the participant was proficient at exerting just enough energy to five fingers on “fragile” or “heavy” objects independently, proportionally, and simultaneously in real-time. The main contribution of this paper is proposing the bionic energy-motion model of hand: decoding a few muscle-energy modes of the human hand (only ten modes in this paper) map massive tasks of bionic hand.


2019 ◽  
Vol 36 (1) ◽  
pp. 1-11 ◽  
Author(s):  
Benyettou Loutfi ◽  
Zeghlache Samir ◽  
Djerioui Ali ◽  
Ghellab Mohammed Zinelaabidine

Sign in / Sign up

Export Citation Format

Share Document