Stability analysis of the anti-lock braking system with time delay

Author(s):  
Qing Ye ◽  
Gao Chaojun ◽  
Ruochen Wang ◽  
Chi Zhang ◽  
Yinfeng Cai

A time delay exists between driver input and vehicle braking state response during the working process of the anti-lock braking system (ABS), and the braking performance of vehicles will be further reduced due to the delay of controllers. This paper investigates a systematic method of stability analysis for time delay ABS, and the analysis focuses on the stability and critical delay algorithm of ABS with delay time. Firstly, the dynamic structure and modelling process of ABS are briefly introduced, and PD control algorithm is adopted to improve the control performance. Then, dynamic models of ABS with time delay are derived, and the full delay stability interval and critical time delay algorithm of ABS are deduced by using the generalized Sturm criterion method. Finally, the validity of the critical delay algorithm by the proposed method and the stability and accuracy of ABS with time delay, different road conditions, vehicle speeds and control parameters are illustrated by numerical simulations, and the results show that the critical time delay algorithm of ABS can be verified under different conditions.

2012 ◽  
Vol 594-597 ◽  
pp. 358-361
Author(s):  
Shan Shan Zhang ◽  
Yu Liang Wu

Collapse is one of the major geological disasters all over the world and threats to life and property safety of people. To make a better understanding of the reason it occurs and how to deal with it, the Kim-Yun-Mine collapse is researched. There are one dangerous rock mass and two collapse accumulation body. The basic characteristics of the collapse is described clearly according to the geological exploration data, and the stability of the dangerous rock mass and the collapse accumulated body is analyzed in the way of engineering geology and stereographic projection. At last, we put forward comprehensive control measures based on the results of stability analysis and collapse characteristics.


2019 ◽  
Vol 272 ◽  
pp. 01024 ◽  
Author(s):  
Feng YU ◽  
Jun XIE

Eight degrees of freedom vehicle model was established. Using the method of fuzzy control, the ABS control algorithm was designed based on slip ratio. Simulation analysis was done at speed of 15m/s, 20m/s, 25m/s under turning braking. The results show that the vehicle braking performance and vehicle stability at middle or low speed was improved by using the ABS controller, but qualitative analysis shows that phenomenon of vehicle instability was appeared at high-speed conditions. The turning braking stability under ABS controller was judged quantificationally by the stability judging formula. The results show that the requirements of stability control could not meet with only Anti-lock Braking System.


2018 ◽  
Vol 51 (14) ◽  
pp. 124-129
Author(s):  
Mohammed Safi ◽  
Lucie Baudouin ◽  
Alexandre Seuret

2010 ◽  
Vol 16 (7-8) ◽  
pp. 1209-1233 ◽  
Author(s):  
T. Insperger ◽  
P. Wahi ◽  
A. Colombo ◽  
G. Stépán ◽  
M. Di Bernardo ◽  
...  

Act-and-wait control is a special case of time-periodic control for systems with feedback delay, where the control gains are periodically switched on and off in order to stabilize otherwise unstable systems. The stability of feedback systems in the presence of time delay is a challenging problem. In this paper, we show that the act-and-wait type time-periodic control can always provide deadbeat control for first-order unstable lag processes with any (large but) fixed value of the time delay in the feedback loop. A full characterization of this act-and-wait controller with respect to the system and control parameters is given based on performance and robustness against disturbances.


Sign in / Sign up

Export Citation Format

Share Document