scholarly journals Holocene biogeography of Tsuga mertensiana and other conifers in the Kenai Mountains and Prince William Sound, south-central Alaska

The Holocene ◽  
2016 ◽  
Vol 27 (4) ◽  
pp. 485-495 ◽  
Author(s):  
R Scott Anderson ◽  
Darrell S Kaufman ◽  
Edward Berg ◽  
Caleb Schiff ◽  
Thomas Daigle

Several important North American coastal conifers – having immigrated during the Holocene from the southeast – reach their northern and upper elevation limits in south-central Alaska. However, our understanding of the specific timing of migration has been incomplete. Here, we use two new pollen profiles from a coastal and a high-elevation site in the Eastern Kenai Peninsula–Prince William Sound region, along with other published pollen records, to investigate the Holocene biogeography and development history of the modern coastal Picea (spruce)– Tsuga (hemlock) forest. Tsuga mertensiana became established at Mica Lake (100 m elevation, near Prince William Sound) by 6000 cal. BP and at Goat Lake (550 m elevation in the Kenai Mountains) sometime after 3000 years ago. Tsuga heterophylla was the last major conifer to arrive in the region. Although driven partially by climate change, major vegetation changes during much of the Holocene are difficult to interpret exclusively in terms of climate, with periods of slow migration alternating with more rapid movement. T. mertensiana expanded slowly northeastward in the early Holocene, compared with Picea sitchensis or T. heterophylla. Difficulty of invading an already established conifer forest may account for this. We suggest that during the early Holocene, non-climatic factors as well as proximity to refugia, influenced rates of migration. Climate may have been more important after ~2600 cal. BP. Continued expansion of T. mertensiana at Goat Lake at the Medieval Climate Anomaly (MCA)–‘Little Ice Age’ (‘LIA’) transition suggests warm and wet winters. But expansion of T. mertensiana at both sites was arrested during the colder climate of the ‘LIA’. The decline was more extensive at Goat Lake, where climatic conditions may have been severe enough to reduce or eliminate the T. mertensiana population. T. mertensiana continued its expansion around Goat Lake after the ‘LIA’.

2010 ◽  
Vol 47 (7) ◽  
pp. 971-985 ◽  
Author(s):  
T. A. Ager ◽  
P. E. Carrara ◽  
J. P. McGeehin

Pollen analysis of two cores with discontinuous records from a peat bog near Girdwood, in south-central Alaska, provides the basis for reconstructing the first radiocarbon-dated outline of postglacial history of vegetation in the upper Turnagain Arm area of Cook Inlet. Pollen data from clayey silt underlying peat at one site indicate that the earliest known vegetation in the Girdwood area was shrub–herb tundra. Tundra vegetation developed by ∼13 800 cal years BP, soon after local retreat of glacial ice from the maximum position of the Elmendorf glacial advance (∼15 000 – 11 000 cal years BP). By ∼10 900 cal years BP, the tundra vegetation became shrubbier as Betula nana , Salix , and Ericales increased, and scattered Alnus shrubs began to colonize Turnagain Arm. By ∼9600 cal years BP, Alnus thickets with Polypodiaceae ferns became the dominant vegetation. By ∼6600 cal years BP, birch trees ( Betula neoalaskana , B. kenaica ) from the Anchorage and Kenai lowlands began to spread eastward into eastern Turnagain Arm. Mountain hemlock ( Tsuga mertensiana ) began to colonize the Girdwood area by ∼3400 cal years BP, followed soon after by Sitka spruce ( Picea sitchensis ), both Pacific coastal forest species that spread westward from Prince William Sound after a long migration from southeastern Alaska. For at least the past 2700 cal years, Pacific coastal forest composed mostly of Tsuga mertensiana , Picea sitchensis , and Alnus has been the dominant vegetation of eastern Turnagain Arm.


2009 ◽  
Vol 22 (2) ◽  
pp. 316-330 ◽  
Author(s):  
A. E. Viau ◽  
K. Gajewski

Abstract Regional paleoclimate reconstructions for northern Canada quantify Holocene climate variability on orbital and millennial time scales and provide a context to better understand the current global warming. The reconstructions are based on available pollen diagrams from the boreal and low Arctic zones of Canada and use the modern analog technique (MAT). Four regional reconstructions document the space–time evolution of the climate during the Holocene. Highest summer and winter temperatures anomalies are found in central Canada during the early Holocene. Eastern Canada was relatively cool in the early Holocene, whereas central Canada was warmest at that time. Labrador was relatively dry in the early to mid-Holocene during which time western Canada was relatively moist. Millennial-scale temperature variations, especially the Medieval Warm Period and Little Ice Age are seen across the continent, with some suggestion of time-transgressive changes from west to east. At the millennial scale, precipitation anomalies are of opposite signs in eastern and western Canada. The results herein indicate that modern increases in temperatures in northern Canada far exceed natural millennial-scale climate variability.


2007 ◽  
Vol 49 (1) ◽  
pp. 55-79 ◽  
Author(s):  
Richard J. Hebda

ABSTRACT British Columbia Holocene vegetation and climate is reconstructed from pollen records. A coastal Pinus contorta paleobiome developed after glacier retreat under cool and probably dry climate. Cool moist forests involving Picea, Abies, Tsuga spp., and Pinus followed until the early Holocene. Pseudotsuga menziesii arrived and spread in the south 10 000-9000 BP, and Picea sitchensis - Tsuga heterophylla forests developed in the north. T. heterophylla increased 7500-7000 BP, and Cupressaceae expanded 5000-4000 BP. Bogs began to develop and expland. Modern vegetation arose 4000-2000 BP. There were early Holocene grass and Artemisia communities at mid-elevations and pine stands at high elevations in southern interior B.C. Forests expanded downslope and lakes formed 8500-7000 BP. Modern forests arose 4500-4000 BP while lower and upper tree lines declined. In northern B.C. non-arboreal communities preceded middle Holocene Picea forests. Abies, Pinus and Picea mariana predominated at various sites after 4000 BP. At 6000 BP Tsuga heterophylla (south) and Picea sitchensis (north) dominated the coast and islands and Quercus garryana and Pseudotsuga on southeast Vancouver Island, but Thuja plicata was infrequent. Southern Interior Plateau vegetation at 6000 BP was more open than today at middle to lower elevations, whereas forests covered the Northern Interior Plateau. Picea forests occurred in northern B.C. Holocene climate phases were: 1) warm dry "xerothermic" ca. 9500-7000 BP, 2) warm moist "mesothermic" ca. 7000-4500 BP, 3) moderate and moist 4500-0 BP, with increasing moisture 8500-6000 BP and cooling (?increased moisture) 4500-3000 BP. B.Cs Hypsithermal had dry and wet stages; 6000 BP occurred in the warm and wet mesothermic stage.


2001 ◽  
Vol 31 (8) ◽  
pp. 1375-1385 ◽  
Author(s):  
D Noah Greenwald ◽  
Linda B Brubaker

We used fossil pollen, charcoal, and sediment stratigraphy in three small hollows to investigate disturbance events and changes in the composition of riparian forests on a small section of the Queets River floodplain, Olympic Peninsula, Washington. The records ranged in age from approximately 500 years at two sites 300 and 550 m from the river, to 5000 years at a site 800 m from the river. Approximately 400–600 years BP, the two sites nearest the river were either inundated by a very large flood or covered by the active channel, which would have occupied a substantially different position than its present course. Following inundation or channel movement, the pollen record suggests that Alnus rubra Bong., the primary mesic forest colonizer in the Pacific Northwest, increased and was then replaced by Picea sitchensis (Bong.) Carrière and Tsuga heterophylla (Raf.) Sarg. At the site farthest from the river, two fires occurred within the last ca. 4500 years. One of the fires was followed by a period of shrub dominance and succession to Tsuga heterophylla. The other fire did not cause a change in the pollen record. A recent unprecedented rise in Tsuga heterophylla pollen, which began ca. 1000 years BP, might be in response to cooling during the Little Ice Age. Overall, the small hollow records highlight the complex effect of floods, fire, and possibly climate change on riparian forests of the Queets River.


Ecosystems ◽  
2021 ◽  
Author(s):  
Robert O’Dwyer ◽  
Laurent Marquer ◽  
Anna-Kari Trondman ◽  
Anna Maria Jönsson

AbstractClimate change and human activities influence the development of ecosystems, with human demand of ecosystem services altering both land use and land cover. Fossil pollen records provide time series of vegetation characteristics, and the aim of this study was to create spatially continuous reconstructions of land cover through the Holocene in southern Sweden. The Landscape Reconstruction Algorithm (LRA) was applied to obtain quantitative reconstructions of pollen-based vegetation cover at local scales, accounting for pollen production, dispersal, and deposition mechanisms. Pollen-based local vegetation estimates were produced from 41 fossil pollen records available for the region. A comparison of 17 interpolation methods was made and evaluated by comparing with current land cover. Simple kriging with cokriging using elevation was selected to interpolate the local characteristics of past land cover, to generate more detailed reconstructions of trends and degree of variability in time and space than previous studies based on pollen data representing the regional scale. Since the Mesolithic, two main processes have acted to reshape the land cover of southern Sweden, originally mostly covered by broad-leaved forests. The natural distribution limit of coniferous forest has moved southward during periods with colder climate and retracted northward during warmer periods, and human expansion in the area and agrotechnological developments has led to a gradually more open landscape, reaching maximum openness at the beginning of the 20th century. The recent intensification of agriculture has led to abandonment of less fertile agricultural fields and afforestation with conifer forest.


2008 ◽  
Vol 69 (2) ◽  
pp. 263-275 ◽  
Author(s):  
R. Scott Anderson ◽  
Renata B. Jass ◽  
Jaime L. Toney ◽  
Craig D. Allen ◽  
Luz M. Cisneros-Dozal ◽  
...  

Chihuahueños Bog (2925 m) in the Jemez Mountains of northern New Mexico contains one of the few records of late-glacial and postglacial development of the mixed conifer forest in southwestern North America. The Chihuahueños Bog record extends to over 15,000 cal yr BP. AnArtemisiasteppe, then an openPiceawoodland grew around a small pond until ca. 11,700 cal yr BP whenPinus ponderosabecame established. C/N ratios,δ13C andδ15N values indicate both terrestrial and aquatic organic matter was incorporated into the sediment. Higher percentages of aquatic algae and elevated C/N ratios indicate higher lake levels at the opening of the Holocene, but a wetland developed subsequently as climate warmed. From ca. 8500 to 6400 cal yr BP the pond desiccated in what must have been the driest period of the Holocene there. C/N ratios declined to their lowest Holocene levels, indicating intense decomposition in the sediment. Wetter conditions returned after 6400 cal yr BP, with conversion of the site to a sedge bog as groundwater levels rose. Higher charcoal influx rates after 6400 cal yr BP probably result from greater biomass production rates. Only minor shifts in the overstory species occurred during the Holocene, suggesting that mixed conifer forest dominated throughout the record.


2001 ◽  
Vol 79 (4) ◽  
pp. 389-397 ◽  
Author(s):  
Hugh J Barclay

Leaf angle distributions are important in assessing both the flexibility of a plant's response to differing daily and seasonal sun angles and also the variability in the proportion of total leaf area visible in remotely sensed images. Leaf angle distributions are presented for six conifer species, Abies grandis (Dougl. ex D. Don) Lindl., Thuja plicata Donn. ex D. Don, Tsuga heterophylla (Raf.) Sarg., Pseudotsuga menziesii (Mirb.) Franco, Picea sitchensis (Bong.) Carr. and Pinus contorta Dougl. ex Loud. var. latifolia. The leaf angles were calculated by measuring four foliar quantities, and then the distributions of leaf angles are cast in three forms: distributions of (i) the angle of the long axis of the leaf from the vertical for the range 0–180°; (ii) the angle of the long axis of the leaf for the range 0–90°; and (iii) the angle of the plane of the leaf for the range 0–90°. Each of these are fit to the ellipsoidal distribution to test the hypothesis that leaf angles in conifers are sufficiently random to fit the ellipsoidal distribution. The fit was generally better for planar angles and for longitudinal angles between 0° and 90° than for longitudinal angles between 0° and 180°. The fit was also better for Tsuga heterophylla, Pseudotsuga menziesii, Picea sitchensis, and Pinus contorta than for Abies grandis and Thuja plicata. This is probably because Abies and Thuja are more shade tolerant than the other species, and so the leaves in Abies and Thuja are preferentially oriented near the horizontal and are much less random than for the other species. Comparisons of distributions on individual twigs, whole branches, entire trees, and groups of trees were done to test the hypothesis that angle distributions will depend on scale, and these comparisons indicated that the apparent randomness and goodness-of-fit increased on passing to each larger unit (twigs up to groups of trees).Key words: conifer, leaf angles, ellipsoidal distribution.


2021 ◽  
Author(s):  
Peng Chen ◽  
Zhongbo Yu ◽  
Markus Czymzik ◽  
Ala Aldahan ◽  
Jinguo Wang ◽  
...  

<p>Multiple proxy records have been used for the understanding of environmental and climate changes during the Holocene. For the first time, we here measure meteoric <sup>10</sup>Be isotope of sediments from a drill core collected at the Kunlun Pass (KP) on the northeastern Qinghai-Tibet Plateau (NETP) to investigate mositure and atmospheric circulation changes during the Holocene. The <sup>10</sup>Be flux suggests relative low levels in the Early Holocene, followed by a sharp increase to high values at around 4 ka BP (4 ka BP = 4000 years before present). Afterwards, the <sup>10</sup>Be flux remains on a high level during the Late Holocene, but decreases slightly towards today. These <sup>10</sup>Be deposition patterns are compared to moisture changes in regions dominated by the Indian Summer Monsoon (ISM), East Asian Summer Monsoon (EASM), and the Westerlies. Different from the gradual changes in monsoon patterns, the <sup>10</sup>Be data reveal low levels during the Early Holocene until ~4 ka BP when an obvious increase was indicated and a relative high level continues to this day, which is relatively more in agreement with patterns of the Westerlies. This finding provides a new evidence for a shift in the dominant pattern of atmospheric circulation at the KP region from a more monsoonal one to one dominated by the Westerlies. Our results improve the understanding of non-stationary interactions and spatial relevance of the EASM, the ISM and the Westerlies on the Qinghai-Tibet Plateau.</p>


Sign in / Sign up

Export Citation Format

Share Document