scholarly journals The chemical, genetic and immunological basis of idiosyncratic drug–induced liver injury

2015 ◽  
Vol 34 (12) ◽  
pp. 1310-1317 ◽  
Author(s):  
A Tailor ◽  
L Faulkner ◽  
DJ Naisbitt ◽  
BK Park

Idiosyncratic drug reactions can be extremely severe and are not accounted for by the regular pharmacology of a drug. Thus, the mechanism of idiosyncratic drug–induced liver injury (iDILI), a phenomenon that occurs with many drugs including β-lactams, anti-tuberculosis drugs and non-steroidal anti-inflammatories, has been difficult to determine and remains a pressing issue for patients and drug companies. Evidence has shown that iDILI is multifactorial and multifaceted, which suggests that multiple cellular mechanisms may be involved. However, a common initiating event has been proposed to be the formation of reactive drug metabolites and covalently bound adducts. Although the fate of these metabolites are unclear, recent evidence has shown a possible link between iDILI and the adaptive immune system. This review highlights the role of reactive metabolites, the recent genetic innovations which have provided molecular targets for iDILI, and the current literature which suggests an immunological basis for iDILI.

2021 ◽  
Vol 22 (6) ◽  
pp. 2954
Author(s):  
Alison Jee ◽  
Samantha Christine Sernoskie ◽  
Jack Uetrecht

Idiosyncratic drug-induced liver injury (IDILI) remains a significant problem for patients and drug development. The idiosyncratic nature of IDILI makes mechanistic studies difficult, and little is known of its pathogenesis for certain. Circumstantial evidence suggests that most, but not all, IDILI is caused by reactive metabolites of drugs that are bioactivated by cytochromes P450 and other enzymes in the liver. Additionally, there is overwhelming evidence that most IDILI is mediated by the adaptive immune system; one example being the association of IDILI caused by specific drugs with specific human leukocyte antigen (HLA) haplotypes, and this may in part explain the idiosyncratic nature of these reactions. The T cell receptor repertoire likely also contributes to the idiosyncratic nature. Although most of the liver injury is likely mediated by the adaptive immune system, specifically cytotoxic CD8+ T cells, adaptive immune activation first requires an innate immune response to activate antigen presenting cells and produce cytokines required for T cell proliferation. This innate response is likely caused by either a reactive metabolite or some form of cell stress that is clinically silent but not idiosyncratic. If this is true it would make it possible to study the early steps in the immune response that in some patients can lead to IDILI. Other hypotheses have been proposed, such as mitochondrial injury, inhibition of the bile salt export pump, unfolded protein response, and oxidative stress although, in most cases, it is likely that they are also involved in the initiation of an immune response rather than representing a completely separate mechanism. Using the clinical manifestations of liver injury from a number of examples of IDILI-associated drugs, this review aims to summarize and illustrate these mechanistic hypotheses.


2018 ◽  
Author(s):  
Fernando Bessone ◽  
Raúl J Andrade

Idiosyncratic drug-induced liver injury (DILI) caused by xenobiotics (drugs, herbals, and dietary supplements) is an elusive liver disease presenting with a range of phenotypes and severity, including acute hepatitis that is indistinguishable from viral hepatitis, autoimmune hepatitis, steatosis, fibrosis or rare chronic vascular syndromes, asymptomatic liver test abnormalities,and acute liver failure. Case definition and characterization using liver biochemistry and histology are crucial for appropriate phenotyping. The incidence of DILI is probably higher than expected by the cases that are identified in clinical practice because of misdiagnosis and underreporting.The pathogenesis of DILI is complex, depending on the interaction of a drug’s physicochemical properties and host factors. Genome-wide association studies have identified several alleles from the major histocompatibility complex system, indicating a fundamental role of the adaptive immune system in DILI pathogenesis. As specific biomarkers for hepatotoxicity are still not available, the diagnosis of DILI remains one of exclusion of the alternative causes of liver damage. Structured causality assessment using the Roussel Uclaf Causality Assessment Method (RUCAM) or previously Council for International Organizations of Medical Sciences (CIOMS) instrument adds consistency to the diagnostic process, although there is room for improvement in the scale domains and score weighting. The therapy for idiosyncratic hepatotoxicity is supportive and relies on the prompt withdrawal of the offending agent. Corticosteroid therapy for hypersensitivity reactions or ursodeoxycholicacid for prolonged cholestasis is empirically used, although the degree of evidence is low. Existing databases have enabled a better prediction of immediate and long-term DILI prognosis. Multivariate models have identified clinical and analytical variables as predictive of acute liver failure and mortality as well as of chronic DILI. This review contains 2 figures, 5 tables, and 55 references Key Words: adaptive immune system; causality assessment; drug-induced liver injury; epidemiology; HLA alleles; pharmacogenetics; registries; risk factors


2018 ◽  
Author(s):  
Fernando Bessone ◽  
Raúl J Andrade

Idiosyncratic drug-induced liver injury (DILI) caused by xenobiotics (drugs, herbals, and dietary supplements) is an elusive liver disease presenting with a range of phenotypes and severity, including acute hepatitis that is indistinguishable from viral hepatitis, autoimmune hepatitis, steatosis, fibrosis or rare chronic vascular syndromes, asymptomatic liver test abnormalities,and acute liver failure. Case definition and characterization using liver biochemistry and histology are crucial for appropriate phenotyping. The incidence of DILI is probably higher than expected by the cases that are identified in clinical practice because of misdiagnosis and underreporting.The pathogenesis of DILI is complex, depending on the interaction of a drug’s physicochemical properties and host factors. Genome-wide association studies have identified several alleles from the major histocompatibility complex system, indicating a fundamental role of the adaptive immune system in DILI pathogenesis. As specific biomarkers for hepatotoxicity are still not available, the diagnosis of DILI remains one of exclusion of the alternative causes of liver damage. Structured causality assessment using the Roussel Uclaf Causality Assessment Method (RUCAM) or previously Council for International Organizations of Medical Sciences (CIOMS) instrument adds consistency to the diagnostic process, although there is room for improvement in the scale domains and score weighting. The therapy for idiosyncratic hepatotoxicity is supportive and relies on the prompt withdrawal of the offending agent. Corticosteroid therapy for hypersensitivity reactions or ursodeoxycholicacid for prolonged cholestasis is empirically used, although the degree of evidence is low. Existing databases have enabled a better prediction of immediate and long-term DILI prognosis. Multivariate models have identified clinical and analytical variables as predictive of acute liver failure and mortality as well as of chronic DILI. This review contains 2 figures, 5 tables and 55 references Key Words: adaptive immune system;causality assessment;drug-induced liver injury; epidemiology; HLA alleles; pharmacogenetics; registries; risk factors


2020 ◽  
Vol 94 (8) ◽  
pp. 2559-2585 ◽  
Author(s):  
Paul A. Walker ◽  
Stephanie Ryder ◽  
Andrea Lavado ◽  
Clive Dilworth ◽  
Robert J. Riley

Abstract Early identification of toxicity associated with new chemical entities (NCEs) is critical in preventing late-stage drug development attrition. Liver injury remains a leading cause of drug failures in clinical trials and post-approval withdrawals reflecting the poor translation between traditional preclinical animal models and human clinical outcomes. For this reason, preclinical strategies have evolved over recent years to incorporate more sophisticated human in vitro cell-based models with multi-parametric endpoints. This review aims to highlight the evolution of the strategies adopted to improve human hepatotoxicity prediction in drug discovery and compares/contrasts these with recent activities in our lab. The key role of human exposure and hepatic drug uptake transporters (e.g. OATPs, OAT2) is also elaborated.


Sign in / Sign up

Export Citation Format

Share Document