scholarly journals Beneficial Storage Effects of Epigallocatechin-3-O-Gallate on the Articular Cartilage of Rabbit Osteochondral Allografts

2009 ◽  
Vol 18 (5-6) ◽  
pp. 505-512 ◽  
Author(s):  
Jung Yoon Bae ◽  
Kazuaki Matsumura ◽  
Shigeyuki Wakitani ◽  
Amu Kawaguchi ◽  
Sadami Tsutsumi ◽  
...  

A fresh osteochondral allograft is one of the most effective treatments for cartilage defects of the knee. Despite the clinical success, fresh osteochondral allografts have great limitations in relation to the short storage time that cartilage tissues can be well-preserved. Fresh osteochondral grafts are generally stored in culture medium at 4°C. While the viability of articular cartilage stored in culture medium is significantly diminished within 1 week, appropriate serology testing to minimize the chances for the disease transmission requires a minimum of 2 weeks. (–)-Epigallocatechin-3- O-gallate (EGCG) has differential effects on the proliferation of cancer and normal cells, thus a cytotoxic effect on various cancer cells, but a cytopreservative effect on normal cells. Therefore, a storage solution containing EGCG might extend the storage duration of articular cartilages. Rabbit osteochondral allografts were performed with osteochondral grafts stored at 4°C in culture medium containing EGCG for 2 weeks and then the clinical effects were examined with macroscopic and histological assessment after 4 weeks. The cartilaginous structure of an osteochondral graft stored with EGCG was well-preserved with high cell viability and glycosaminoglycan (GAG) content of the extracellular matrix (ECM). After an osteochondral allograft, the implanted osteochondral grafts stored with EGCG also provided a significantly better retention of the articular cartilage with viability and metabolic activity. These data suggest that EGCG can be an effective storage agent that allows long-term preservation of articular cartilage under cold storage conditions.

2021 ◽  
pp. 036354652110030
Author(s):  
Hailey P. Huddleston ◽  
Atsushi Urita ◽  
William M. Cregar ◽  
Theodore M. Wolfson ◽  
Brian J. Cole ◽  
...  

Background: Osteochondral allograft transplantation is 1 treatment option for focal articular cartilage defects of the knee. Large irregular defects, which can be treated using an oblong allograft or multiple overlapping allografts, increase the procedure’s technical complexity and may provide suboptimal cartilage and subchondral surface matching between donor grafts and recipient sites. Purpose: To quantify and compare cartilage and subchondral surface topography mismatch and cartilage step-off for oblong and overlapping allografts using a 3-dimensional simulation model. Study Design: Controlled laboratory study. Methods: Human cadaveric medial femoral hemicondyles (n = 12) underwent computed tomography and were segmented into cartilage and bone components using 3-dimensional reconstruction and modeling software. Segments were then exported into point-cloud models. Modeled defect sizes of 17 × 30 mm were created on each recipient hemicondyle. There were 2 types of donor allografts from each condyle utilized: overlapping and oblong. Grafts were virtually harvested and implanted to optimally align with the defect to provide minimal cartilage surface topography mismatch. Least mean squares distances were used to measure cartilage and subchondral surface topography mismatch and cartilage step-off. Results: Cartilage and subchondral topography mismatch for the overlapping allograft group was 0.27 ± 0.02 mm and 0.80 ± 0.19 mm, respectively. In comparison, the oblong allograft group had significantly increased cartilage (0.62 ± 0.43 mm; P < .001) and subchondral (1.49 ± 1.10 mm; P < .001) mismatch. Cartilage step-off was also found to be significantly increased in the oblong group compared with the overlapping group ( P < .001). In addition, overlapping allografts more reliably provided a significantly higher percentage of clinically acceptable (0.5- and 1-mm thresholds) cartilage surface topography matching (overlapping: 100% for both 0.5 and 1 mm; oblong: 90% for 1 mm and 56% for 0.5 mm; P < .001) and cartilage step-off (overlapping: 100% for both 0.5 and 1 mm; oblong: 86% for 1 mm and 12% for 0.5 mm; P < .001). Conclusion: This computer simulation study demonstrated improved topography matching and decreased cartilage step-off with overlapping osteochondral allografts compared with oblong osteochondral allografts when using grafts from donors that were not matched to the recipient condyle by size or radius of curvature. These findings suggest that overlapping allografts may be superior in treating large, irregular osteochondral defects involving the femoral condyles with regard to technique. Clinical Relevance: This study suggests that overlapping allografts may provide superior articular cartilage surface topography matching compared with oblong allografts and do so in a more reliable fashion. Surgeons may consider overlapping allografts over oblong allografts because of the increased ease of topography matching during placement.


Author(s):  
Philippa Bowland ◽  
Eileen Ingham ◽  
John Fisher ◽  
Louise M Jennings

Robust preclinical test methods involving tribological simulations are required to investigate and understand the tribological function of osteochondral repair interventions in natural knee tissues. The aim of this study was to investigate the effects of osteochondral allograft implantation on the local tribology (friction, surface damage, wear and deformation) of the tissues in the natural knee joint using a simple geometry, reciprocating pin-on-plate friction simulator. In addition, the study aimed to assess the ability of osteochondral grafts to restore a low surface damage, deformation and wear articulation when compared to the native state. A method was developed to characterise and quantify surface damage wear and deformation of the opposing cartilage-bone pin surface using a non-contacting optical profiler (Alicona Infinite Focus). Porcine 12 mm diameter cartilage-bone pins were reciprocated against bovine cartilage-bone plates that had 6 mm diameter osteochondral allografts, cartilage defects or stainless steel pins (positive controls) inserted centrally. Increased levels of surface damage with changes in geometry were not associated with significant increases in the coefficient of dynamic friction. Significant damage to the opposing cartilage surface was observed in the positive control groups. Cartilage damage, deformation and wear (as measured by change in geometry) in the xenograft (2.4 mm3) and cartilage defect (0.99 mm3) groups were low and not significantly different (p > 0.05) compared to the negative control in either group. The study demonstrated the potential of osteochondral grafts to restore the congruent articular surface and biphasic tribology of the natural joint. An optical method has been developed to characterise cartilage wear, damage and deformation that can be applied to the tribological assessment of osteochondral grafts in a whole natural knee joint simulation model.


Cartilage ◽  
2020 ◽  
pp. 194760352096707
Author(s):  
Kezhou Wu ◽  
Leila Laouar ◽  
Janet A. W. Elliott ◽  
Nadr M. Jomha

Objective Successful preservation of articular cartilage will increase the availability of osteochondral allografts to treat articular cartilage defects. We compared the effects of 2 methods for storing cartilage tissues using 10-mm diameter osteochondral dowels or femoral condyles at −196°C: (a) storage with a surrounding vitrification solution versus (b) storage without a surrounding vitrification solution. We investigated the effects of 2 additives (chondroitin sulfate and ascorbic acid) for vitrification of articular cartilage. Design Healthy porcine stifle joints ( n = 11) from sexually mature pigs were collected from a slaughterhouse within 6 hours after slaughtering. Dimethyl sulfoxide, ethylene glycol, and propylene glycol were permeated into porcine articular cartilage using an optimized 7-hour 3-step cryoprotectant permeation protocol. Chondrocyte viability was assessed by a cell membrane integrity stain and chondrocyte metabolic function was assessed by alamarBlue assay. Femoral condyles after vitrification were assessed by gross morphology for cartilage fractures. Results There were no differences in the chondrocyte viability (~70%) of 10-mm osteochondral dowels after vitrification with or without the surrounding vitrification solution. Chondrocyte viability in porcine femoral condyles was significantly higher after vitrification without the surrounding vitrification solution (~70%) compared to those with the surrounding vitrification solution (8% to 36%). Moreover, articular cartilage fractures were not seen in femoral condyles vitrified without surrounding vitrification solution compared to fractures seen in condyles with surrounding vitrification solution. Conclusions Vitrification of femoral condyle allografts can be achieved by our optimized approach. Removing the surrounding vitrification solution is advantageous for vitrification outcomes of large size osteochondral allografts.


2012 ◽  
Vol 94 (21) ◽  
pp. 1984-1995 ◽  
Author(s):  
Andrea L. Pallante ◽  
Simon Görtz ◽  
Albert C. Chen ◽  
Robert M. Healey ◽  
Derek C. Chase ◽  
...  

2020 ◽  
Vol 33 (12) ◽  
pp. 1187-1200
Author(s):  
Jacob G. Calcei ◽  
Taylor Ray ◽  
Seth L. Sherman ◽  
Jack Farr

AbstractLarge, focal articular cartilage defects of the knee (> 4 cm2) can be a source of significant morbidity and often require surgical intervention. Patient- and lesion-specific factors must be identified when evaluating a patient with an articular cartilage defect. In the management of large cartilage defects, the two classically utilized cartilage restoration procedures are osteochondral allograft (OCA) transplantation and cell therapy, or autologous chondrocyte implantation (ACI). Alternative techniques that are available or currently in clinical trials include a hyaluronan-based scaffold plus bone marrow aspirate concentrate, a third-generation autologous chondrocyte implant, and an aragonite-based scaffold. In this review, we will focus on OCA and ACI as the mainstay in management of large chondral and osteochondral defects of the knee. We will discuss the techniques and associated clinical outcomes for each, while including a brief mention of alternative treatments. Overall, cartilage restoration techniques have yielded favorable clinical outcomes and can be successfully employed to treat these challenging large focal lesions.


Cartilage ◽  
2019 ◽  
pp. 194760351988879
Author(s):  
Janet M. Denbeigh ◽  
Mario Hevesi ◽  
Carlo A. Paggi ◽  
Zachary T. Resch ◽  
Leila Bagheri ◽  
...  

Objective. Osteochondral allograft (OCA) transplantation has demonstrated good long-term outcomes in treatment of cartilage defects. Viability, a key factor in clinical success, decreases with peri-implantation storage at 4°C during pathogen testing, matching logistics, and transportation. Modern, physiologic storage conditions may improve viability and enhance outcomes. Design. Osteochondral specimens from total knee arthroplasty patients (6 males, 5 females, age 56.4 ± 2.2 years) were stored in media and incubated at normoxia (21% O2) at 22°C or 37°C, and hypoxia (2% O2) at 37°C. Histology, live-dead staining, and quantitative polymerase chain reaction (qPCR) was performed 24 hours after harvest and following 7 days of incubation. Tissue architecture, cell viability, and gene expression were analyzed. Results. No significant viability or gene expression deterioration of cartilage was observed 1-week postincubation at 37°C, with or without hypoxia. Baseline viable cell density (VCD) was 94.0% ± 2.7% at day 1. At day 7, VCD was 95.1% (37°C) with normoxic storage and 92.2% (37°C) with hypoxic storage ( P ≥ 0.27). Day 7 VCD (22°C) incubation was significantly lower than both the baseline and 37°C storage values (65.6%; P < 0.01). COL1A1, COL1A2, and ACAN qPCR expression was unchanged from baseline ( P < 0.05) for all storage conditions at day 7, while CD163 expression, indicative of inflammatory macrophages and monocytes, was significantly lower in the 37°C groups ( P < 0.01). Conclusion. Physiologic storage at 37°C demonstrates improved chondrocyte viability and metabolism, and maintained collagen expression compared with storage at 22°C. These novel findings guide development of a method to optimize short-term fresh OCA storage, which may lead to improved clinical results.


Cartilage ◽  
2020 ◽  
pp. 194760352096888 ◽  
Author(s):  
Sarav S. Shah ◽  
Kai Mithoefer

Injuries to articular cartilage of the knee are increasingly common. The operative management of these focal chondral lesions continues to be problematic for the treating orthopedic surgeon secondary to the limited regenerative capacity of articular cartilage. The pericellular matrix (PCM) is a specialized, thin layer of the extracellular matrix that immediately surrounds chondrocytes forming a unit together called the chondron. The advancements in our knowledge base with regard to the PCM/chondrons as well as interterritorial matrix has permeated and led to advancements in product development in conjunction with minced cartilage, marrow stimulation, osteochondral allograft, and autologous chondrocyte implantation (ACI). This review intends to summarize recent progress in chondrocytes with matrix research, with an emphasis on the role the PCM/extracellular matrix (ECM) plays for favorable chondrogenic gene expression, as a barrier/filtration unit, and in osteoarthritis. The bulk of the review describes cutting-edge and evolving clinical developments and discuss these developments in light of underlying basic science applications. Clinical applications of chondrocytes with matrix science include Reveille Cartilage Processor, Cartiform, and ACI with Spherox (which was recently recommended for the treatment of grade III or IV articular cartilage defects over 2 cm2 by the National Institute of Health and Care Excellence [NICE] in the United Kingdom). The current article presents a comprehensive overview of both the basic science and clinical results of these next-generation cartilage repair techniques by focusing specifically on the scientific evolution in each category as it pertains with underlying chondrocytes with matrix theory.


Sign in / Sign up

Export Citation Format

Share Document