viable cell density
Recently Published Documents


TOTAL DOCUMENTS

31
(FIVE YEARS 13)

H-INDEX

10
(FIVE YEARS 1)

Metabolites ◽  
2021 ◽  
Vol 11 (12) ◽  
pp. 823
Author(s):  
Grace Yao ◽  
Kathryn Aron ◽  
Michael Borys ◽  
Zhengjian Li ◽  
Girish Pendse ◽  
...  

Much progress has been made in improving the viable cell density of bioreactor cultures in monoclonal antibody production from Chinese hamster ovary (CHO) cells; however, specific productivity (qP) has not been increased to the same degree. In this work, we analyzed a library of 24 antibody-expressing CHO cell clones to identify metabolites that positively associate with qP and could be used for clone selection or medium supplementation. An initial library of 12 clones, each producing one of two antibodies, was analyzed using untargeted LC-MS experiments. Metabolic model-based annotation followed by correlation analysis detected 73 metabolites that significantly correlated with growth, qP, or both. Of these, metabolites in the alanine, aspartate, and glutamate metabolism pathway, and the TCA cycle showed the strongest association with qP. To evaluate whether these metabolites could be used as indicators to identify clones with potential for high productivity, we performed targeted LC-MS experiments on a second library of 12 clones expressing a third antibody. These experiments found that aspartate and cystine were positively correlated with qP, confirming the results from untargeted analysis. To investigate whether qP correlated metabolites reflected endogenous metabolic activity beneficial for productivity, several of these metabolites were tested as medium additives during cell culture. Medium supplementation with citrate improved qP by up to 490% and more than doubled the titer. Together, these studies demonstrate the potential for using metabolomics to discover novel metabolite additives that yield higher volumetric productivity in biologics production processes.


2021 ◽  
Vol 21 (1) ◽  
Author(s):  
Laura Bryan ◽  
Michael Henry ◽  
Ronan M. Kelly ◽  
Christopher C. Frye ◽  
Matthew D. Osborne ◽  
...  

Abstract Background The ability to achieve high peak viable cell density earlier in CHO cell culture and maintain an extended cell viability throughout the production process is highly desirable to increase recombinant protein yields, reduce host cell impurities for downstream processing and reduce the cost of goods. In this study we implemented label-free LC-MS/MS proteomic profiling of IgG4 producing CHO cell lines throughout the duration of the cell culture to identify differentially expressed (DE) proteins and intracellular pathways associated with the high peak viable cell density (VCD) and extended culture VCD phenotypes. Results We identified key pathways in DNA replication, mitotic cell cycle and evasion of p53 mediated apoptosis in high peak VCD clonally derived cell lines (CDCLs). ER to Golgi vesicle mediated transport was found to be highly expressed in extended culture VCD CDCLs while networks involving endocytosis and oxidative stress response were significantly downregulated. Conclusion This investigation highlights key pathways for targeted engineering to generate desirable CHO cell phenotypes for biotherapeutic production.


2021 ◽  
Vol 12 ◽  
Author(s):  
Pamela Ceron-Chafla ◽  
Yu-ting Chang ◽  
Korneel Rabaey ◽  
Jules B. van Lier ◽  
Ralph E. F. Lindeboom

Volatile fatty acid accumulation is a sign of digester perturbation. Previous work showed the thermodynamic limitations of hydrogen and CO2 in syntrophic propionate oxidation under elevated partial pressure of CO2 (pCO2). Here we study the effect of directional selection under increasing substrate load as a strategy to restructure the microbial community and induce cross-protection mechanisms to improve glucose and glycerol conversion performance under elevated pCO2. After an adaptive laboratory evolution (ALE) process, viable cell density increased and predominant microbial groups were modified: an increase in Methanosaeta and syntrophic propionate oxidizing bacteria (SPOB) associated with the Smithella genus was found with glycerol as the substrate. A modest increase in SPOB along with a shift in the predominance of Methanobacterium toward Methanosaeta was observed with glucose as the substrate. The evolved inoculum showed affected diversity within archaeal spp. under 5 bar initial pCO2; however, higher CH4 yield resulted from enhanced propionate conversion linked to the community shifts and biomass adaptation during the ALE process. Moreover, the evolved inoculum attained increased cell viability with glucose and a marginal decrease with glycerol as the substrate. Results showed differences in terms of carbon flux distribution using the evolved inoculum under elevated pCO2: glucose conversion resulted in a higher cell density and viability, whereas glycerol conversion led to higher propionate production whose enabled conversion reflected in increased CH4 yield. Our results highlight that limited propionate conversion at elevated pCO2 resulted from decreased cell viability and low abundance of syntrophic partners. This limitation can be mitigated by promoting alternative and more resilient SPOB and building up biomass adaptation to environmental conditions via directional selection of microbial community.


Agronomy ◽  
2021 ◽  
Vol 11 (5) ◽  
pp. 996
Author(s):  
Muhamad Aidilfitri Mohamad Roslan ◽  
Izzalan Sohedein ◽  
Puan Sheau Ling ◽  
Zulfazli M. Sobri ◽  
Ali Tan Kee Zuan ◽  
...  

The application of plant beneficial bioinoculants such as phosphate solubilizing bacteria is a sustainable approach to expanding crop performance in agriculture. However, bioinoculant strains, particularly non-sporulating bacteria are often exposed to detrimental conditions throughout the production process and a long period of storage. This will negatively influence their viable cell density and eventually limit its efficacy in the field. To overcome such a scenario, an optimal formulation of biofertilizer should be prioritized. In this report, a sustainable valorization of molasses and defatted soybean meal as formulation of biofertilizer enriched with Enterobacter hormaechei 40a was proposed. Through the two-level factorial design and central composite design, the optimal formulation and fermentation conditions of bio-organic fertilizer to achieve maximum cell density of strain 40a were achieved. The highest cell density of strain 40a in the optimized molasses-DSM (OMD) medium was 12.56 log CFU/mL after 24 h which was 99.7% accuracy towards the predicted value. Interestingly, the solubilized P was increased by 62.4% in the OMD medium (174.07 µg/mL P) as compared to the standard P medium (65.38 µg/mL P). The shelf life of strain 40a after 180 days of storage was improved significantly around 10 log CFU/mL, when the OMD medium was amended with 0.1% sodium alginate. The strategy described here offers opportunities for agronomic formulation and large-scale bio-organic fertilizer production in the agriculture industry.


Processes ◽  
2020 ◽  
Vol 8 (9) ◽  
pp. 1179
Author(s):  
Stephen Goldrick ◽  
Alexandra Umprecht ◽  
Alison Tang ◽  
Roman Zakrzewski ◽  
Matthew Cheeks ◽  
...  

Raman spectroscopy has the potential to revolutionise many aspects of biopharmaceutical process development. The widespread adoption of this promising technology has been hindered by the high cost associated with individual probes and the challenge of measuring low sample volumes. To address these issues, this paper investigates the potential of an emerging new high-throughput (HT) Raman spectroscopy microscope combined with a novel data analysis workflow to replace off-line analytics for upstream and downstream operations. On the upstream front, the case study involved the at-line monitoring of an HT micro-bioreactor system cultivating two mammalian cell cultures expressing two different therapeutic proteins. The spectra generated were analysed using a partial least squares (PLS) model. This enabled the successful prediction of the glucose, lactate, antibody, and viable cell density concentrations directly from the Raman spectra without reliance on multiple off-line analytical devices and using only a single low-volume sample (50–300 μL). However, upon the subsequent investigation of these models, only the glucose and lactate models appeared to be robust based upon their model coefficients containing the expected Raman vibrational signatures. On the downstream front, the HT Raman device was incorporated into the development of a cation exchange chromatography step for an Fc-fusion protein to compare different elution conditions. PLS models were derived from the spectra and were found to predict accurately monomer purity and concentration. The low molecular weight (LMW) and high molecular weight (HMW) species concentrations were found to be too low to be predicted accurately by the Raman device. However, the method enabled the classification of samples based on protein concentration and monomer purity, allowing a prioritisation and reduction in samples analysed using A280 UV absorbance and high-performance liquid chromatography (HPLC). The flexibility and highly configurable nature of this HT Raman spectroscopy microscope makes it an ideal tool for bioprocess research and development, and is a cost-effective solution based on its ability to support a large range of unit operations in both upstream and downstream process operations.


2020 ◽  
pp. 219256822094803
Author(s):  
Benjamin T. Raines ◽  
James T. Stannard ◽  
Olivia E. Stricklin ◽  
Aaron M. Stoker ◽  
Theodore J. Choma ◽  
...  

Study Design: Controlled laboratory study. Objective: To investigate the impact of exposure to physiologically relevant caffeine concentrations on intervertebral disc (IVD) cell viability and extracellular matrix composition (ECM) in a whole organ culture model as potential contributing mechanisms in development and progression of IVD disorders in humans. Primary outcome measures were IVD viable cell density (VCD) and ECM composition. Methods: A total of 190 IVD whole organ explants from tails of 16 skeletally mature rats—consisting of cranial body half, endplate, IVD, endplate, and caudal body half—were harvested. IVD explants were randomly assigned to 1 of 2 groups: uninjured (n = 90) or injured (20G needle disc puncture/aspiration method, n = 100). Explants from each group were randomly assigned to 1 of 3 treatment groups: low caffeine (LCAF: 5 mg/L), moderate caffeine (MCAF: 10 mg/L), and high caffeine (HCAF: 15 mg/L) concentrations. Results: Cell viability was significantly higher in the low-caffeine group compared with the high-caffeine group at day 7 ( P = .037) and in the low-caffeine group compared with the medium- and high-caffeine groups at day 21 ( P ≤ .004). Analysis of ECM showed that all uninjured and control groups had significantly higher ( P < .05) glycosaminoglycan concentrations compared with all injured groups. Furthermore, we observed a temporal, downward trend in proteoglycan to collagen ratio for the caffeine groups. Conclusions: Caffeine intake may be a risk factor for IVD degeneration, especially in conjunction with disc injury. Mechanisms for caffeine associated disc degeneration may involve cell and ECM, and further studies should elucidate mechanistic pathways and potential benefits for caffeine restriction.


Cartilage ◽  
2019 ◽  
pp. 194760351988879
Author(s):  
Janet M. Denbeigh ◽  
Mario Hevesi ◽  
Carlo A. Paggi ◽  
Zachary T. Resch ◽  
Leila Bagheri ◽  
...  

Objective. Osteochondral allograft (OCA) transplantation has demonstrated good long-term outcomes in treatment of cartilage defects. Viability, a key factor in clinical success, decreases with peri-implantation storage at 4°C during pathogen testing, matching logistics, and transportation. Modern, physiologic storage conditions may improve viability and enhance outcomes. Design. Osteochondral specimens from total knee arthroplasty patients (6 males, 5 females, age 56.4 ± 2.2 years) were stored in media and incubated at normoxia (21% O2) at 22°C or 37°C, and hypoxia (2% O2) at 37°C. Histology, live-dead staining, and quantitative polymerase chain reaction (qPCR) was performed 24 hours after harvest and following 7 days of incubation. Tissue architecture, cell viability, and gene expression were analyzed. Results. No significant viability or gene expression deterioration of cartilage was observed 1-week postincubation at 37°C, with or without hypoxia. Baseline viable cell density (VCD) was 94.0% ± 2.7% at day 1. At day 7, VCD was 95.1% (37°C) with normoxic storage and 92.2% (37°C) with hypoxic storage ( P ≥ 0.27). Day 7 VCD (22°C) incubation was significantly lower than both the baseline and 37°C storage values (65.6%; P < 0.01). COL1A1, COL1A2, and ACAN qPCR expression was unchanged from baseline ( P < 0.05) for all storage conditions at day 7, while CD163 expression, indicative of inflammatory macrophages and monocytes, was significantly lower in the 37°C groups ( P < 0.01). Conclusion. Physiologic storage at 37°C demonstrates improved chondrocyte viability and metabolism, and maintained collagen expression compared with storage at 22°C. These novel findings guide development of a method to optimize short-term fresh OCA storage, which may lead to improved clinical results.


2019 ◽  
Author(s):  
Shamitha Shetty

The quality and yield of the monoclonal antibodies produced in a cGMP environment is heavily influenced by the bioprocess-related parameters which impact the cell growth and metabolism of the mammalian cell cultures. This research report describes a study conducted to examine the effects of varying temperature and RPM set points on viable cell density and viability of NS0 cultures. All cultures were grown in 250 mL shake flasks (working vol. 100 mL). To separately analyze the effects of temperature and agitation rate on NS0 cell metabolism, flask stage cultures were evaluated in triplicates at two cultivation temperatures (36 °C and 38 °C) and two agitation rates (120 RPM and 160 RPM) while controls were maintained at 37 °C and 140 RPM for both the conditions using an incubator. Flasks were sampled every 24 h and analyzed for viable cell density and % viability. Additional data was collected on pH, pO2, pCO2, osmolality, glucose, lactate, glutamate and glutamine levels in the culture. It was observed that variations in temperature has the greatest effect on viable cell density and viability and varying agitation rates had minimal effect on growth of cultures. A temperature set point of 38 °C is detrimental to the culture growth. The control set points proved to be optimal for this process.


Cartilage ◽  
2019 ◽  
pp. 194760351988033
Author(s):  
Mario Hevesi ◽  
Janet M. Denbeigh ◽  
Carlo A. Paggi ◽  
Catalina Galeano-Garces ◽  
Leila Bagheri ◽  
...  

Objective This study aims to (1) determine and validate living cartilage allograft transplantation as a novel source for viable osteochondral allograft (OCA) tissues and (2) perform histologic and viability comparisons of living donor cartilage tissues to currently available clinical-grade standard processed grafts. Design Using healthy cartilage from well-preserved contralateral compartments in 27 patients undergoing total knee arthroplasty (TKA) and 10 clinical-grade OCA specimens obtained immediately following operative implantation, standard and living donor OCA quality was evaluated at the time of harvest and following up to 3 weeks of storage on the basis of macroscopic International Cartilage Repair Society grade, histology, and viability. Results Osteochondral samples demonstrated a consistent decrease in viability and histologic quality over the first 3 weeks of storage at 37°C, supporting the utility of an OCA paradigm shift toward early implantation, as was the clinical standard up until recent adoption of transplantation at 14 to 35 days following donor procurement. Samples from the 10 clinical-grade OCAs, implanted at an average of 23 days following graft harvest demonstrated a mean viable cell density of 45.6% at implantation, significantly lower ( P < 0.01) than the 93.6% viability observed in living donor allograft tissues. Conclusions Osteochondral tissue viability and histologic quality progressively decreases with ex vivo storage, even when kept at physiologic temperatures. Currently available clinical OCAs are stored for 2 to 5 weeks prior to implantation and demonstrate inferior viability to that of fresh osteochondral tissues that can be made available through the use of a living donor cartilage program.


Sign in / Sign up

Export Citation Format

Share Document