The Study on the Microstructures and High Performances of Melt Blending Polyurethane/Multiwalled Carbon Nanotubes Composites

2008 ◽  
Vol 16 (8) ◽  
pp. 509-518 ◽  
Author(s):  
Fengdan Jiang ◽  
Sizhu Wu ◽  
Yongji Wei ◽  
Liqun Zhang ◽  
Guohua Hu

A melt blending process was employed to prepare nanocomposites based on thermoplastic polyurethane (TPU) and multiwalled carbon nanotubes (MWNT). The content of MWNT filled in TPU was increased till 40 phr (parts per hundreds of rubber). The morphological, structural and mechanical properties of the resulting TPU nanocomposites were systematically investigated using scanning electron microscope (SEM), transmission electron microscope (TEM), differential scanning calorimetry (DSC), X-ray diffraction (XRD), dynamic mechanical thermal analysis (DMTA) and tensile testing. The results indicated that the unmodified MWNT were dispersed finely and uniformly in the TPU matrix beyond expectation, and the microphase separation structures of the TPU nanocomposites were slightly affected by the presence of MWNT. The mechanical properties of the TPU nanocomposites containing various amounts of MWNT at both room temperature and 120 °C were studied, which demonstrated that the modulus of TPU were greatly increased and the high temperature tensile strength of TPU was also prominently improved when MWNT content is higher. Moreover, the TPU nanocomposites exhibited improved thermal and electrical conductivities that might mean the TPU/MWNT nanocomposites have potential application as multifunctional materials.

Holzforschung ◽  
2015 ◽  
Vol 69 (2) ◽  
pp. 199-205 ◽  
Author(s):  
Anuj Kumar ◽  
Arun Gupta ◽  
Korada Viswanathan Sharma

AbstractThe effect of multiwalled carbon nanotubes (MWCNT) as reinforcement on the properties of urea-formaldehyde (UF) resin and medium-density fiberboards was investigated. MWCNT was added to UF in two concentrations, and the effects were studied by means of differential scanning calorimetry and dynamic mechanical thermal analysis in terms of the curing and viscoelastic properties of the resins. In the presence of MWCNT, the activation energy of the resins was lowered, and their storage modulus and thermal conductivity were enhanced. The formaldehyde emission decreased and mechanical properties increased after addition of MWCNT to UF resin.


RSC Advances ◽  
2015 ◽  
Vol 5 (39) ◽  
pp. 30912-30919 ◽  
Author(s):  
Yan Zhou ◽  
Hao Xiu ◽  
Jia Dai ◽  
Hongwei Bai ◽  
Qin Zhang ◽  
...  

In this study, we simultaneously introduced both poly(lactic acid) (PLA) and multiwalled carbon nanotubes (CNTs) into the polyurethane (PU) matrix via melt blending, to achieve balanced mechanical properties and good conductivity.


2019 ◽  
Vol 9 ◽  
pp. 184798041984085 ◽  
Author(s):  
P Kalakonda ◽  
S Banne ◽  
PB Kalakonda

Carbon nanotubes are considered to be ideal candidates for improving the mechanical properties of polymer nanocomposite scaffolds due to their higher surface area, mechanical properties of three-dimensional isotropic structure, and physical properties. In this study, we showed the improved mechanical properties prepared by backfilling of preformed hydrogels and aerogels of individually dispersed multiwalled carbon nanotubes (MWCNTs-Baytubes) and thermoplastic polyurethane. Here, we used the solution-based fabrication method to prepare the composite scaffold and observed an improvement in tensile modulus about 200-fold over that of pristine polymer at 19 wt% MWCNT loading. Further, we tested the thermal properties of composite scaffolds and observed that the nanotube networks suppress the mobility of polymer chains, the composite scaffold samples were thermally stable well above their decomposition temperatures that extend the mechanical integrity of a polymer well above its polymer melting point. The improved mechanical properties of the composite scaffold might be useful in smart material industry.


2012 ◽  
Vol 2 (6) ◽  
pp. 166-168 ◽  
Author(s):  
Dr.T.Ch.Madhavi Dr.T.Ch.Madhavi ◽  
◽  
Pavithra.P Pavithra.P ◽  
Sushmita Baban Singh Sushmita Baban Singh ◽  
S.B.Vamsi Raj S.B.Vamsi Raj ◽  
...  

2017 ◽  
Vol 7 ◽  
pp. 184798041770717 ◽  
Author(s):  
Anna D Dobrzańska-Danikiewicz ◽  
Weronika Wolany ◽  
Dariusz Łukowiec ◽  
Karolina Jurkiewicz ◽  
Paweł Niedziałkowski

The purpose of the article is to discuss the process of oxidation of carbon nanotubes subsequently subjected to the process of decoration with rhenium nanoparticles. The influence of functionalization in an oxidizing medium is presented and the results of investigations using Raman spectroscopy and infrared spectroscopy are discussed. Multiwalled carbon nanotubes rhenium-type nanocomposites with the weight percentage of 10%, 20% and 30% of rhenium are also presented in the article. The structural components of such nanocomposites are carbon nanotubes decorated with rhenium nanoparticles. Microscopic examinations under transmission electron microscope and scanning transmission electron microscope using the bright and dark field confirm that nanocomposites containing about 20% of rhenium have the most homogenous structure.


Sign in / Sign up

Export Citation Format

Share Document