Characterization and determination of thermal and radioluminescence properties of low-density polyethylene (LDPE)-(nanozeolite + Y2O3) composite

2019 ◽  
Vol 28 (2) ◽  
pp. 112-118
Author(s):  
Murat Çanlı ◽  
İlker Çetin Keskin ◽  
Murat Türemiş ◽  
Kamil Sirin ◽  
Mehmet İsmail Katı

Nanotechnology has become one of the most popular areas of interdisciplinary research. In the vast majority of nanotechnology applications, polymer-based matrices were used as the dispersing medium of nanoparticles. The combination of polymer–zeolite nanocomposite has the potential to come out with the advantages of polymers and zeolites while coping with the deficiencies of both materials. In this study, the synthesis and properties of low-density polyethylene (LDPE) composites with nanozeolite + Y2O3 are investigated. Polyethylene nanocomposite fibers containing nanozeolite + Y2O3 at 5% by mass using a melt extrusion method were composed in a laboratory type twin screw extruder. The thermal properties of the composite fibers were determined by analysis of both thermal gravimetric and differential thermal spectra. Their structural properties were enlightened by scanning electron microscopy, Fourier transform infrared, and ultraviolet absorption. According to the results of X-ray diffraction tests, the samples contain crystals in semicrystalline and α form. The mechanical properties of LDPE matrices increased with the addition of nanoparticles. In addition, radioluminescence properties of the polymer were also improved after composing with nanozeolite and Y2O3.

2013 ◽  
Vol 652-654 ◽  
pp. 485-489 ◽  
Author(s):  
Ni Na Wang ◽  
Ding Han Xiang ◽  
Pin Shu Mo ◽  
Yi Lu

Low density polyethylene (LDPE) was modified by the addition of commercial fire retardants FR01 and aluminium hydroxide (ATH). ATH/FR01/LDPE composites were prepared by melt blending and extrusion in a twin-screw extruder. ATH was first modified by a silane coupling agent KH550 then added to LDPE. The flame retardancy, electrical property and thermal behavior of the LDPE composites were investigated by limiting oxygen index (LOI), volume resistivity and thermogravimetric analysis (TGA), respectively. The results indicated that the surface modification of ATH (M-ATH) could greatly improve the dispersibility and compatibility with LDPE matrix. The mechanical property tests showed good mechanical properties of composite, compared with unmodified one, tensile strength and elongation of M-ATH/LDPE were all improved, and the addition of FR01 improved the flame retardancy of ATH/LDPE remarkably. TGA results demonstrate that char yield of M-ATH/FR01/LDPE (30/15/70) reaches 27 wt% at 600 °C in Ar atmosphere.


1999 ◽  
Vol 32 (5) ◽  
pp. 1620-1625 ◽  
Author(s):  
Griselda Barrera Galland ◽  
Roberto F. de Souza ◽  
Raquel Santos Mauler ◽  
Fernanda F. Nunes

2018 ◽  
Vol 32 (3) ◽  
pp. 297-311 ◽  
Author(s):  
Yousef Ahmad Mubarak ◽  
Raghda Talal Abdulsamad

This work was intended to provide an understanding of the effect of microcrystalline cellulose (MCC) on the mechanical properties of low-density polyethylene (LDPE). The impact resistance and the tensile properties of low-density LDPE/MCC composites were investigated. The weight fraction of MCC was varied at (0, 0.5, 1, 2.5, 5, 10, 20, and 30 wt%). The obtained blends were then used to prepare the required tensile and impact testing samples by hot compression molding technique. It has been found that MCC has a strong influence on the mechanical properties of LDPE. At a low MCC weight fraction, there was a little improvement in the ultimate strength, fracture stress, and elongation at break, but at a high MCC weight fraction, the tensile properties were deteriorated and reduced significantly. The addition of 1 wt% MCC to LDPE enhanced the mentioned properties by 10, 25, and 6%, respectively. While at 30 wt% MCC, these properties were lowered by 36, 25, and 96%. The elastic modulus of LDPE composites was improved on all MCC weight fractions used in the study, at 20 wt% MCC, an increase in the elastic modulus by 12 folds was achieved. On the other hand and compared with the impact strength of pure LDPE, the addition of MCC particles enhanced the impact strength, the highest value obtained was for LDPE composites filled with 10 wt% MCC where the impact strength enhanced by two folds.


2013 ◽  
Vol 47 (4) ◽  
pp. 365-372 ◽  
Author(s):  
S Sultana ◽  
HP Nur ◽  
T Saha ◽  
M Saha

In this research work, cellulosic waste mango (Mangifera indica) saw dust used as the reinforcing material with low density polyethylene (LDPE). A number of samples of saw dust reinforced low density polyethylene (LDPE) composites were prepared by compression moulding technique. In order to improve the mechanical properties of saw dust-LDPE composites, unbleached raw saw dust fibers were modified by oxidation using sodium hypochlorite. FT-IR spectroscopic and scanning electron micrograph (SEM) analyses were done and the results showed the evidence of positive oxidation reaction. The effects of oxidized saw dust on the performance of oxidized saw dust reinforced LDPE composites were studied comparing with the raw saw dust-LDPE composites. The effects of fiber content on the physico-mechanical properties of composites were also studied by preparing the composites with different percentage of fiber loading (from 7.5 wt% to 30 wt%) for each type of composite. Mechanical properties such as tensile strength, tensile modulus, elongation at break, flexural strength, flexural modulus of the resulting composite were measured. Better results were obtained from oxidized saw dust-LDPE composites. Scanning electron micrograph and water absorption tests were carried out for all composites and improved results were found for oxidized saw dust-LDPE composites. Bangladesh J. Sci. Ind. Res. 47(4), 365-372, 2012 DOI: http://dx.doi.org/10.3329/bjsir.v47i4.14065


Sign in / Sign up

Export Citation Format

Share Document