scholarly journals Microencapsulated healing agents for an elevated-temperature cured epoxy: Influence of viscosity on healing efficiency

2021 ◽  
pp. 096739112110453
Author(s):  
Habibah Ghazali ◽  
Lin Ye ◽  
Amie N Amir

Among many applications, elevated-temperature cured epoxy resins are widely used for high-performance applications especially for structural adhesive and as a matrix for structural composites. This is due to their superior chemical and mechanical properties. The thermosetting nature of epoxy produces a highly cross-linked polymer network during the curing process where the resulting material exhibited excellent properties. However, due to this cross-linked molecular structure, epoxies are also known to be brittle, and once a crack initiated in the material, it is difficult to arrest the crack propagation. Earlier research found that the inclusion of encapsulated healing agents is able to introduce self-healing ability to the room-temperature cured epoxies. The current study investigated the self-healing behaviour of an elevated-temperature cured epoxy, which incorporated the dual-capsule system loaded with diglycidyl-ether of bisphenol-A (DGEBA) resin and mercaptan. The microcapsules were prepared by the in-situ polymerisation method while the fracture toughness and the self-healing capability of the tapered-double-cantilever-beam (TDCB) epoxy specimens were measured under Mode-I fracture toughness testing. We investigated the effect of temperature on viscosity of the healing agents and how these values influence the formation of uniform healing on the fracture surfaces. It was found that incorporation of the dual-capsule self-healing system onto an elevated-temperature cured epoxy slightly changed the fracture toughness of the epoxy as indicated by the Mode-I testing. In the case of thermal healing at 70°C, the self-healing epoxy exhibited a recovery of up to 111% of its original fracture toughness, where a uniform spreading of the healant was observed. The excellent healing behaviour is attributed to the lower viscosity of the healant at higher temperature and the higher glass transition temperature ( Tg) of the produced healant film. The DSC analysis confirmed that the healing process was not contributed by the post-curing of the host epoxy.

RSC Advances ◽  
2018 ◽  
Vol 8 (54) ◽  
pp. 30661-30668 ◽  
Author(s):  
Huidan Niu ◽  
Xinyu Du ◽  
Shuyu Zhao ◽  
Zuqing Yuan ◽  
Xiuling Zhang ◽  
...  

The self-healing process and the primary characteristics showing the performance of the self-healed triboelectric nanogenerator.


2018 ◽  
Vol 1 (1) ◽  
pp. 38 ◽  
Author(s):  
J J Ekaputri ◽  
M S Anam ◽  
Y Luan ◽  
C Fujiyama ◽  
N Chijiwa ◽  
...  

Cracks are caused by many factors. Shrinkage and external loading are the most common reason. It becomes a problem when the ingression of aggressive and harmful substance penetrates to the concrete gap. This problem reduces the durability of the structures. It is well known that self – healing of cracks significantly improves the durability of the concrete structure. This paper presents self-healing cracks of cement paste containing bentonite associated with ground granulated blast furnace slag. The self-healing properties were evaluated with four parameters: crack width on the surface, crack depth, tensile strength recovery, and flexural recovery. In combination with microscopic observation, a healing process over time is also performed. The results show that bentonite improves the healing properties, in terms of surface crack width and crack depth. On the other hand, GGBFS could also improve the healing process, in terms of crack depth, direst tensile recovery, and flexural stiffness recovery. Carbonation reaction is believed as the main mechanism, which contributes the self-healing process as well as the continuous hydration progress.


2019 ◽  
Vol 289 ◽  
pp. 01006 ◽  
Author(s):  
Alberto Negrini ◽  
Marta Roig-Flores ◽  
Eduardo J. Mezquida-Alcaraz ◽  
Liberato Ferrara ◽  
Pedro Serna

Concrete has a natural self-healing capability to seal small cracks, named autogenous healing, which is mainly produced by continuing hydration and carbonation. This capability is very limited and is activated only when in direct contact with water. High Performance Fibre-Reinforced Concrete and Engineered Cementitious Composites have been reported to heal cracks for low damage levels, due to their crack pattern with multiple cracks and high cement contents. While their superior self-healing behaviour compared to traditional concrete types is frequently assumed, this study aims to have a direct comparison to move a step forward in durability quantification. Reinforced concrete beams made of traditional, high-performance and ultra-high-performance fibre-reinforced concretes were prepared, sized 150×100×750 mm3. These beams were pre-cracked in flexion up to fixed strain levels in the tensioned zone to allow the analysis of the effect of the different cracking patterns on the self-healing capability. Afterwards, water permeability tests were performed before and after healing under water immersion. A modification of the water permeability test was also explored using chlorides to evaluate the potential protection of this healing in chloride-rich environments. The results show the superior durability and self-healing performance of UHPFRC elements.


Author(s):  
J.L. García Calvo ◽  
G. Pérez ◽  
P. Carballosa ◽  
E. Erkizia ◽  
J.J. Gaitero ◽  
...  

Sign in / Sign up

Export Citation Format

Share Document