Free vibration characteristics of multi-core sandwich composite beams: Experimental and numerical investigation

2021 ◽  
pp. 096739112110576
Author(s):  
Rajeshkumar Selvaraj ◽  
Kamesh Gupta ◽  
Shubham Kumar Singh ◽  
Ankur Patel ◽  
Manoharan Ramamoorthy

This study investigates the free vibration responses of laminated composite sandwich beam with multi-cores using experimental and numerical methods. The laminated composite face sheets are made by using hand layup method. An experimental modal test has been carried for different configurations of multi-core sandwich beams under different end conditions. The single-core and multi-core sandwich beams has been modeled and the natural frequencies of sandwich beams are determined using ANSYS software. The numerical model is verified by comparing the obtained natural frequencies with experimental results. The numerical and experimental results indicate that the multi-core sandwich beam greatly influences the structural stiffness compared with single-core sandwich beam under different end conditions. Furthermore, the influence of several parameters such as the end conditions, thickness of the core layer, and stacking sequence on the natural frequencies of the various configurations of the multi-core sandwich beams are presented.

2007 ◽  
Vol 16 (2) ◽  
pp. 096369350701600 ◽  
Author(s):  
Buket Okutan Baba ◽  
Ronald F. Gibson

The aim of this study is to report the effect of delamination on the vibration characteristics of composite sandwich beams. The natural frequencies and corresponding vibration modes of a free-free sandwich beam with delamination of various sizes and locations are predicted using a two-dimensional finite element analysis (FEA). The presence of delamination affects the stiffness of the delaminated beam and results in differences on the natural frequencies of the beam. Assessment of the differences light the way for the existence, size and location of the delaminated region and can be used for a non-destructive evaluation of the damage characteristics of the delaminated beams. Vibration tests are conducted on fully bonded sandwich beams with carbon/epoxy laminated composite faces and foam core to verify the finite element results. Agreement between predictions of the model and experimental observations is good.


2020 ◽  
Vol 6 (2) ◽  
pp. 61
Author(s):  
Muhittin Turan ◽  
Volkan Kahya

In this study, free vibration analysis of layered composite beams is performed by using an analytical method based on trigonometric series. Based on the first-order shear deformation beam theory, the governing equations are derived from the Lagrange’s equations. Appropriate trigonometric series functions are selected to satisfy the end conditions of the beam. Navier-type solution is used to obtain natural frequencies. Natural frequencies are calculated for different end conditions and lamina stacking. It was seen that the slenderness, E11/E22 and fiber angle have a significant effect on natural frequency. The results of the study are quite compatible with the literature.


2014 ◽  
Vol 592-594 ◽  
pp. 2041-2045 ◽  
Author(s):  
B. Naresh ◽  
A. Ananda Babu ◽  
P. Edwin Sudhagar ◽  
A. Anisa Thaslim ◽  
R. Vasudevan

In this study, free vibration responses of a carbon nanotube reinforced composite beam are investigated. The governing differential equations of motion of a carbon nanotube (CNT) reinforced composite beam are presented in finite element formulation. The validity of the developed formulation is demonstrated by comparing the natural frequencies evaluated using present FEM with those of available literature. Various parametric studies are also performed to investigate the effect of aspect ratio and percentage of CNT content and boundary conditions on natural frequencies and mode shapes of a carbon nanotube reinforced composite beam. It is shown that the addition of carbon nanotube in fiber reinforced composite beam increases the stiffness of the structure and consequently increases the natural frequencies and alter the mode shapes.


2021 ◽  
Vol 2 (110) ◽  
pp. 72-85
Author(s):  
S.H. Bakhy ◽  
M. Al-Waily ◽  
M.A. Al-Shammari

Purpose: In this study, the free vibration analysis of functionally graded materials (FGMs) sandwich beams having different core metals and thicknesses is considered. The variation of material through the thickness of functionally graded beams follows the power-law distribution. The displacement field is based on the classical beam theory. The wide applications of functionally graded materials (FGMs) sandwich structures in automotive, marine construction, transportation, and aerospace industries have attracted much attention, because of its excellent bending rigidity, low specific weight, and distinguished vibration characteristics. Design/methodology/approach: A mathematical formulation for a sandwich beam comprised of FG core with two layers of ceramic and metal, while the face sheets are made of homogenous material has been derived based on the Euler–Bernoulli beam theory. Findings: The main objective of this work is to obtain the natural frequencies of the FG sandwich beam considering different parameters. Research limitations/implications: The important parameters are the gradient index, slenderness ratio, core metal type, and end support conditions. The finite element analysis (FEA), combined with commercial Ansys software 2021 R1, is used to verify the accuracy of the obtained analytical solution results. Practical implications: It was found that the natural frequency parameters, the mode shapes, and the dynamic response are considerably affected by the index of volume fraction, the ratio as well as face FGM core constituents. Finally, the beam thickness was dividing into frequent numbers of layers to examine the impact of many layers' effect on the obtained results. Originality/value: It is concluded, that the increase in the number of layers prompts an increment within the frequency parameter results' accuracy for the selected models. Numerical results are compared to those obtained from the analytical solution. It is found that the dimensionless fundamental frequency decreases as the material gradient index increases, and there is a good agreement between two solutions with a maximum error percentage of no more than 5%.


2014 ◽  
Vol 19 (2) ◽  
pp. 365-377 ◽  
Author(s):  
C.V. Srinivasa ◽  
Y.J. Suresh ◽  
W.P. Prema Kumar

Abstract The present paper deals with the experimental studies carried out on free vibration of isotropic and laminated composite skew plates. The natural frequencies were also determined using QUAD8 finite element of MSC/NASTRAN and a comparison was made between the experimental values and the finite element solution. The effects of the skew angle and aspect ratio on the natural frequencies of isotropic skew plates were studied. The effects of the skew angle, aspect ratio, fiber orientation angle and laminate sequence (keeping the number of layers constant) on the natural frequencies of antisymmetric composite laminates were also studied. The experimental values of natural frequencies are in good agreement with the FE solutions. The natural frequencies are found to increase with an increase in the skew angle. The variation of natural frequencies with the aspect ratio is small and negligible both for isotropic and laminated composite skew plates.


2015 ◽  
Vol 15 (07) ◽  
pp. 1540011 ◽  
Author(s):  
Helong Wu ◽  
Sritawat Kitipornchai ◽  
Jie Yang

This paper investigates the free vibration and elastic buckling of sandwich beams with a stiff core and functionally graded carbon nanotube reinforced composite (FG-CNTRC) face sheets within the framework of Timoshenko beam theory. The material properties of FG-CNTRCs are assumed to vary in the thickness direction, and are estimated through a micromechanical model. The governing equations and boundary conditions are derived by using Hamilton's principle and discretized by employing the differential quadrature (DQ) method to obtain the natural frequency and critical buckling load of the sandwich beam. A detailed parametric study is conducted to study the effects of carbon nanotube volume fraction, core-to-face sheet thickness ratio, slenderness ratio, and end supports on the free vibration characteristics and buckling behavior of sandwich beams with FG-CNTRC face sheets. The vibration behavior of the sandwich beam under an initial axial force is also discussed. Numerical results for sandwich beams with uniformly distributed carbon nanotube-reinforced composite (UD-CNTRC) face sheets are also provided for comparison.


Author(s):  
Tran Huu Quoc ◽  
Tran Minh Tu ◽  
Vu Van Tham

This paper deals with the free vibration and dynamic responses of composite sandwich plates. The sandwich plate has three layers in which two face sheets are made of isotropic material, and the core layer is made of auxetic honeycomb structures with a negative Poisson's ratio.  A smoothed finite element model based on the first-order shear deformation theory is established for the analysis purpose. In the model, only the linear approximation is necessary, and the discrete shear gap method for triangular plate elements is used to avoid the shear locking. The Newmark direct integration technique is used to capture the dynamic responses of the sandwich plates. The convergence study is made, and the accuracy of present results is validated by comparison with available data in the literature. The influence of geometrical parameters, material properties, and boundary conditions are explored and discussed. Numerical results show that auxetic materials have several different responses compared to conventional materials, and these behaviors are strongly influenced by the internal structure of the auxetic material.


2019 ◽  
Vol 30 (7) ◽  
pp. 1053-1069 ◽  
Author(s):  
M Talebitooti ◽  
M Fadaee

Vibration suppression of a carbon nanotube–reinforced sandwich beam with magnetorheological fluid core is numerically investigated by employing the differential quadrature method. The beam has functionally graded carbon nanotube–reinforced composite base and constraining layers while its core layer is made of magnetorheological fluid. Four different types of distribution of carbon nanotubes along the thickness direction are considered. The extended rule of mixture is used to explain the effective material properties of the base and constraining layers of the beam. The equations of motion and corresponding boundary conditions are derived by applying Hamilton’s principle, and then these coupled differential equations are transformed into a set of algebraic equation applying the differential quadrature method. Natural frequencies and loss factors are extracted and compared with those available in literature. Convergence study has been performed to verify stability of the method. Effects of various parameters such as magnetic field intensity, mode number, and thickness of the magnetorheological fluid core layer on the natural frequencies and loss factors are studied.


Sign in / Sign up

Export Citation Format

Share Document