scholarly journals Newborn screening for sickling and other haemoglobin disorders using tandem mass spectrometry: A pilot study of methodology in laboratories in England

2016 ◽  
Vol 23 (4) ◽  
pp. 175-178 ◽  
Author(s):  
Yvonne A Daniel ◽  
Joan Henthorn

Objective To determine (i) if electrospray mass spectrometry–mass spectrometry with the SpOtOn Diagnostics Ltd reagent kit for sickle cell screening could be integrated into the English newborn screening programme, under routine screening conditions, and provide mass spectrometry–mass spectrometry results which match existing methods, and (ii) if common action values could be set for all manufacturers in the study, for all assessed haemoglobins, to indicate which samples require further investigation. Methods Anonymised residual blood spots were analysed using the SpOtOn reagent kit as per manufacturer’s instructions, in parallel with existing techniques at four laboratories. Mass spectrometry–mass spectrometry instrumentation at Laboratories A and B was AB Sciex (Warrington, UK) AP4000, and at Laboratories C and D, Waters Micromass (Manchester, UK), Xevo TQMS and Premier, respectively. Results There were 23,898 results accepted from the four laboratories. Excellent specificity at 100% sensitivity was observed for haemoglobin S, haemoglobin C, haemoglobin E and haemoglobin OArab. A common action value was not possible for Hb C, but action values were set by manufacturer. The two haemoglobin DPunjab cases at Laboratory D were not detected using the common action value. Conversely, false-positive results with haemoglobin DPunjab were a problem at the remaining three laboratories. Conclusions This multicentre study demonstrates that it is possible to implement mass spectrometry–mass spectrometry into an established screening programme while maintaining consistency with existing methods for haemoglobinopathy screening. However, one of the instruments investigated cannot be recommended for use with this application.

Metabolites ◽  
2021 ◽  
Vol 11 (8) ◽  
pp. 468
Author(s):  
Anthony E. Jones ◽  
Nataly J. Arias ◽  
Aracely Acevedo ◽  
Srinivasa T. Reddy ◽  
Ajit S. Divakaruni ◽  
...  

Coenzyme A (CoA) is an essential cofactor for dozens of reactions in intermediary metabolism. Dysregulation of CoA synthesis or acyl CoA metabolism can result in metabolic or neurodegenerative disease. Although several methods use liquid chromatography coupled with mass spectrometry/mass spectrometry (LC-MS/MS) to quantify acyl CoA levels in biological samples, few allow for simultaneous measurement of intermediates in the CoA biosynthetic pathway. Here we describe a simple sample preparation and LC-MS/MS method that can measure both short-chain acyl CoAs and biosynthetic precursors of CoA. The method does not require use of a solid phase extraction column during sample preparation and exhibits high sensitivity, precision, and accuracy. It reproduces expected changes from known effectors of cellular CoA homeostasis and helps clarify the mechanism by which excess concentrations of etomoxir reduce intracellular CoA levels.


Author(s):  
Yiming Lin ◽  
Weifeng Zhang ◽  
Zhixu Chen ◽  
Chunmei Lin ◽  
Weihua Lin ◽  
...  

Abstract Objectives Multiple acyl-CoA dehydrogenase deficiency (MADD) is an autosomal recessive disorder of fatty acid, amino acid and choline metabolism. Late-onset MADD is caused by ETFDH mutations and is the most common lipid storage myopathy in China. However, few patients with MADD have been identified through newborn screening (NBS). This study assessed the acylcarnitine profiles and molecular features of patients with MADD identified through NBS. Methods From January 2014 to June 2020, 479,786 newborns screened via tandem mass spectrometry were recruited for this study. Newborns with elevated levels of multiple acylcarnitines were recalled, those who tested positive in the reassessment were referred for genetic analysis. Results Of 479,786 newborns screened, six were diagnosed with MADD. The MADD incidence in the Chinese population was estimated to be 1:79,964. Initial NBS revealed five patients with typical elevations in the levels of multiple acylcarnitines; however, in one patient, acylcarnitine levels were in the normal reference range during recall. Notably, one patient only exhibited a mildly increased isovalerylcarnitine (C5) level at NBS. The patient with an atypical acylcarnitine profile was diagnosed with MADD by targeted gene sequencing. Six distinct ETFDH missense variants were identified, with the most common variant being c.250G>A (p.A84T), with an allelic frequency of 58.35 (7/12). Conclusions These findings revealed that it is easy for patients with MADD to go unidentified, as they may have atypical acylcarnitine profiles at NBS and the recall stage, indicating the value of genetic analysis for confirming suspected inherited metabolic disorders in the NBS program. Therefore, false-negative (FN) results may be reduced by combining tandem mass spectrometry (MS/MS) with genetic testing in NBS for MADD.


2017 ◽  
Vol 12 ◽  
pp. 80-81 ◽  
Author(s):  
Michael H. Gelb ◽  
C. Ronald Scott ◽  
Frantisek Turecek ◽  
Hsuan-Chieh Liao

Sign in / Sign up

Export Citation Format

Share Document