Polyclonal antibody–based immunohistochemical detection of intraleukocytic Theileria parasites in roan and sable antelopes

2021 ◽  
pp. 104063872110332
Author(s):  
Sarah J. Clift ◽  
Bernat Martí-Garcia ◽  
Rephima M. Phaswane ◽  
Emily P. Mitchell ◽  
Antoinette I. Josemans ◽  
...  

Theileria parasites commonly infect African wild artiodactyls. In rare roan ( Hippotragus equinus) and sable ( H. niger) antelopes, Theileria sp. (sable)-associated calf mortalities constrain breeding programs. The pathogenicity of most leukocyte-transforming Theileria spp. originates in their invasion of and multiplication in various mononuclear leukocytes, the transformation of both infected and uninfected leukocytes, and their infiltration of multiple organs. Understanding the pathogenesis of theileriosis can be improved by the use of immunohistochemistry (IHC) to identify the localization of the parasites in tissue sections. Our aim was to develop a reproducible IHC assay to detect leukocyte-associated Theileria parasites in formalin-fixed, paraffin-embedded roan and sable tissues. Polyclonal antibodies were purified from the sera of 5 roans from an area endemic for Theileria sp. (sable) and tested for IHC reactivity in 55 infected and 39 control roan and sable antelopes, and for antigen and species cross-reactivity in an additional 58 cases. The 3 strongest antibodies consistently detected intraleukocytic theilerial antigens in known positive cases in roan and sable antelopes, and also detected other Theileria spp. in non-hippotraginid wild artiodactyl tissues. The antibodies did not cross-react with other apicomplexan protozoa, with the exception of Cryptosporidium. Given that PCR on its own cannot determine the significance of theilerial infection in wild ruminants, IHC is a useful laboratory test with which to confirm the diagnosis in these species.

2000 ◽  
Vol 12 (3) ◽  
pp. 224-232 ◽  
Author(s):  
Mette Boye ◽  
Anne A. Feenstra ◽  
Conny Tegtmeier ◽  
Lars Ole Andresen ◽  
Søren R. Rasmussen ◽  
...  

Streptococcus suis is an important pathogen in pigs and is considered a zoonotic agent. To aid diagnosis of infection caused by S. suis, a species-specific probe targeting 16S ribosomal RNA was designed and used for fluorescent in situ hybridization. Two additional immunohistochemical detection methods, an indirect immunofluorescence assay and a peroxidase-antiperoxidase method, using polyclonal antibodies also were developed. The specificity of the oligonucleotide probe was examined by whole-cell and dot-blot hybridization against reference strains of the 35 serotypes of S. suis and other closely related streptococci and other bacteria commonly isolated from pigs. The probe was specific for S. suis serotypes 1–31. The specificity of the polyclonal antibodies, which has previously been evaluated for use in diagnostic bacteriology for typing of serotype 2, was further evaluated in experimentally infected murine tissue with pure culture of different serotypes of S. suis, related streptococci, and other bacteria commonly found in pigs. The polyclonal antibodies against S. suis serotype 2 cross-reacted with serotypes 1 and 1/2 in these assays. The in situ hybridization and the immunohistochemical methods were used for detection of S. suis in formalin-fixed, paraffin-embedded tissue sections of brain, endocardium, and lung from pigs infected with S. suis. The methods developed were able to detect single cells of S. suis in situ in the respective samples, whereas no signal was observed from control tissue sections that contained organisms other than S. suis. These techniques are suitable for determining the in vivo localization of S. suis for research and diagnostic purposes.


2017 ◽  
Vol 71 (2) ◽  
pp. 148-153 ◽  
Author(s):  
Jian R Bao ◽  
Richard B Clark ◽  
Ronald N Master ◽  
Kileen L Shier ◽  
Lynn L Eklund

AimsAcid-fast bacterium (AFB) identification from formalin-fixed paraffin-embedded (FFPE) tissues is challenging and may not be readily available to the clinical laboratory. A method to detect and identify AFB from FFPE tissues using PCR and pyrosequencing (PCR-Seq) was developed and evaluated.MethodsThe method was validated using spiked cell-clotted paraffin blocks before use with patients’ specimens. DNA was extracted from tissue sections, and a 16S rRNA gene fragment was amplified and a signature sequence was produced on a PyroMark ID system. Sequences were aligned to established databases for AFB identification. Additional tissue sections were stained and examined for AFB.ResultsBoth sensitivity and specificity were 100% on spiked cell-clotted blocks without cross-reactivity with non-AFB. Of 302 FFPE tissues from patients, 116 (38%) were AFB-stain positive; 83 (72%) of these had AFB identified. The 21 AFB identified included Mycobacterium tuberculosis complex (14 cases), Mycobacterium leprae (3), Mycobacterium genavense (2), Mycobacterium marinum-ulcerans group (3) and 17 other AFB (61). Thirteen cases were AFB-stain indeterminate and 4 were positive by the PCR-Seq method. Of the AFB stain-negative cases, 167 were negative and 6 were positive by PCR-Seq.ConclusionsThe PCR-Seq method provided specific identification of various AFB species or complexes from FFPE tissues.


1991 ◽  
Vol 39 (6) ◽  
pp. 741-748 ◽  
Author(s):  
S R Shi ◽  
M E Key ◽  
K L Kalra

We describe a new approach for retrieval of antigens from formalin-fixed, paraffin-embedded tissues and their subsequent staining by immunohistochemical techniques. This method of antigen retrieval is based on microwave heating of tissue sections attached to microscope slides to temperatures up to 100 degrees C in the presence of metal solutions. Among 52 monoclonal and polyclonal antibodies tested by this method, 39 antibodies demonstrated a significant increase in immunostaining, nine antibodies showed no change, and four antibodies showed reduced immunostaining. In particular, excellent immunostaining results were obtained with a monoclonal antibody to vimentin as well as several different keratin antibodies on routine formalin-fixed tissue sections after pre-treatment of the slides with this method. These results showed that after antigen retrieval: (a) enzyme predigestion of tissues could be omitted; (b) incubation times of primary antibodies could be significantly reduced, or dilutions of primary antibodies could be increased; (c) adequate staining could be achieved in long-term formalin-fixed tissues that failed to stain by conventional methods; and (d) certain antibodies which were typically unreactive with formalin-fixed tissues gave excellent staining.


2016 ◽  
Vol 54 (11) ◽  
pp. 2798-2803 ◽  
Author(s):  
Elham Salehi ◽  
Mohammad T. Hedayati ◽  
Jan Zoll ◽  
Haleh Rafati ◽  
Maryam Ghasemi ◽  
...  

In a retrospective multicenter study, 102 formalin-fixed paraffin-embedded (FFPE) tissue specimens with histopathology results were tested. Two 4- to 5-μm FFPE tissue sections from each specimen were digested with proteinase K, followed by automated nucleic acid extraction. Multiple real-time quantitative PCR (qPCR) assays targeting the internal transcribed spacer 2 (ITS2) region of ribosomal DNA, using fluorescently labeled primers, was performed to identify clinically important genera and species of Aspergillus , Fusarium , Scedosporium , and the Mucormycetes . The molecular identification was correlated with results from histological examination. One of the main findings of our study was the high sensitivity of the automated DNA extraction method, which was estimated to be 94%. The qPCR procedure that was evaluated identified a range of fungal genera/species, including Aspergillus fumigatus , Aspergillus flavus , Aspergillus terreus , Aspergillus niger , Fusarium oxysporum , Fusarium solani , Scedosporium apiospermum , Rhizopus oryzae , Rhizopus microsporus , Mucor spp., and Syncephalastrum . Fusarium oxysporum and F. solani DNA was amplified from five specimens from patients initially diagnosed by histopathology as having aspergillosis. Aspergillus flavus , S. apiospermum , and Syncephalastrum were detected from histopathological mucormycosis samples. In addition, examination of four samples from patients suspected of having concomitant aspergillosis and mucormycosis infections resulted in the identification of two A. flavus isolates, one Mucor isolate, and only one sample having both R. oryzae and A. flavus . Our results indicate that histopathological features of molds may be easily confused in tissue sections. The qPCR assay used in this study is a reliable tool for the rapid and accurate identification of fungal pathogens to the genus and species levels directly from FFPE tissues.


1996 ◽  
Vol 44 (11) ◽  
pp. 1251-1259 ◽  
Author(s):  
J R Reeves ◽  
J J Going ◽  
G Smith ◽  
T G Cooke ◽  
B W Ozanne ◽  
...  

The relationship between expression of the c-erbB-2 proto-oncogene and the biology of breast cancer has been investigated widely, most studies using immunohistochemistry in formalin-fixed, paraffin-embedded tissues. This technique is at best semiquantitative and there is a high degree of interstudy variability because of its subjective nature and poor methodological standardization. The relationship between the levels of expression and biology can be examined thoroughly only with an accurately quantitative technique. We have developed a radioimmunohistochemical assay to measure p185(erbB-2) in tissue biopsy specimens. The method involves incubating frozen sections with 125I-labeled monoclonal antibody, microautoradiograpy, and grain counting with image analysis. Sections of cell pellets with known c-erbB-2 levels are processed with each batch of samples as internal calibration standards. We have quantified c-erbB-2 expression in 60 breast carcinomas and compared the results with conventional immunohistochemistry. Radioimmunohistochemistry measured receptor levels throughout the range of expression in breast carcinomas, whereas conventional immunohistochemistry detected the protein only in the highest expressing tumors. The quantitative, objective data produced by radioimmunohistochemistry allow a more thorough evaluation of the relationship between c-erbB-2 expression and tumor biology. This technique may have applications in other fields where quantitative data is required and relevant monoclonal antibodies are available.


1993 ◽  
Vol 5 (1) ◽  
pp. 16-20 ◽  
Author(s):  
Renke Larochelle ◽  
Ronald Magar

Protein A-gold (PAG) and a primary porcine antiserum were used in immunogold silver staining (IGSS) for the detection of transmissible gastroenteritis virus (TGEV) in formalin-fixed paraffin-embedded tissue sections of small intestine originating from infected pigs. Immunogold electron microscopy was used to evaluate the reactivity of the prepared PAG marker with the specific porcine TGEV antiserum. Gold particles were closely associated with single virions and immune aggregates of TGEV. When IGSS, using PAG as the marker, was applied to tissue sections, dark staining of TGEV-infected villous enterocytes was observed. Background was low, allowing good visualization by light microscopy of the distribution of viral antigen. Two other gold conjugates, protein A/G-gold (PA/GG) and protein G-gold (PGG), were tested in IGSS. The labeling with PA/GG was comparable to that obtained with PAG. However, no staining was observed when PGG was used. The use of IGSS and PAG offers advantages and may represent a useful technique for the detection of other viral pathogens.


Blood ◽  
2019 ◽  
Vol 134 (Supplement_1) ◽  
pp. 3588-3588
Author(s):  
Ko Kudo ◽  
Rika Kanezaki ◽  
Akie Kobayashi ◽  
Tomohiko Sato ◽  
Takuya Kamio ◽  
...  

Introduction: The BRAF mutation V600E, the most common somatic mutation in Langerhans cell histiocytosis (LCH), has been reported in approximately 50% of LCH patients and is associated with certain high-risk clinical features. Precursors harboring this mutation can differentiate into Langerhans cells resulting in infiltrates in multiple organs under inflammatory conditions. However, BRAF status in the bone marrow of pediatric LCH patients is unclear. The present study examined somatic mutations in paired tumor and bone marrow samples, using a highly sensitive assay involving next-generation targeted sequencing and droplet digital polymerase chain reaction (PCR) for pediatric LCH patients. Methods: Between 1996 and 2019, in total of 17 Japanese pediatric patients with LCH were enrolled. The male/female ratio was 7/11. Ages of onset of LCH were median 13 months (range 5-193 months). At diagnosis of LCH, 2 patients were positive for risk organ involvement, 15 were negative. We retrospectively performed mutational analyses of 17 LCH cases using formalin-fixed paraffin-embedded LCH tumor specimens to provide templates for PCR-based targeted amplicon sequencing with customized primers to detect mutations in exons 12 and 15 in BRAF, and exons 2 and 3 in MAP2K1. Thereafter, we identified somatic mutations in the 17 paired bone marrow samples via droplet digital allele-specific PCR, targeting BRAF V600E and BRAF exon 12 in-frame deletion 496-500 (Ex12 in-del). Results: We detected BRAF V600E in 11 of 17 tumor samples (65%) and the BRAF Ex 12 in-del in 3 of 17 tumors (18%). We identified BRAF V600E in bone marrow samples in 10 of the 11 cases (90%) with the mutation in the tumor at low variant allele frequency (median 0.25%, range 0.14-7.0%). BRAF Ex 12 in-del was not detected in the bone marrow. Cases with detectable bone marrow involvement included eight patients with multi-system disease affecting multiple organs, one patient with multi-focal bone disease, and one patient with single-system disease. Clinical phenotypes including relapse did not correlate with BRAF V600E upon detection in the bone marrow. Conclusion: We established the sensitive assay based on PCR-based targeted NGS for detecting somatic mutations in LCH even accessible for formalin-fixed, paraffin-embedded clinical specimens. Bone marrow involvement is frequently detectable at the molecular level in pediatric LCH with the BRAF V600E mutation. A prospective study is warranted to evaluate the clinical impact of mutational burden in bone marrow. Disclosures Kudo: Unum Therapeutics: Patents & Royalties. Imai:Juno Therapeutics: Patents & Royalties.


Sign in / Sign up

Export Citation Format

Share Document