ffpe tissues
Recently Published Documents


TOTAL DOCUMENTS

258
(FIVE YEARS 129)

H-INDEX

20
(FIVE YEARS 3)

2022 ◽  
Vol 13 (1) ◽  
Author(s):  
Tam Vu ◽  
Alexander Vallmitjana ◽  
Joshua Gu ◽  
Kieu La ◽  
Qi Xu ◽  
...  

AbstractMultiplexed mRNA profiling in the spatial context provides new information enabling basic research and clinical applications. Unfortunately, existing spatial transcriptomics methods are limited due to either low multiplexing or complexity. Here, we introduce a spatialomics technology, termed Multi Omic Single-scan Assay with Integrated Combinatorial Analysis (MOSAICA), that integrates in situ labeling of mRNA and protein markers in cells or tissues with combinatorial fluorescence spectral and lifetime encoded probes, spectral and time-resolved fluorescence imaging, and machine learning-based decoding. We demonstrate MOSAICA’s multiplexing scalability in detecting 10-plex targets in fixed colorectal cancer cells using combinatorial labeling of five fluorophores with facile error-detection and removal of autofluorescence. MOSAICA’s analysis is strongly correlated with sequencing data (Pearson’s r = 0.96) and was further benchmarked using RNAscopeTM and LGC StellarisTM. We further apply MOSAICA for multiplexed analysis of clinical melanoma Formalin-Fixed Paraffin-Embedded (FFPE) tissues. We finally demonstrate simultaneous co-detection of protein and mRNA in cancer cells.


2022 ◽  
Vol 52 (3) ◽  
Author(s):  
Kelen Regina Ascoli Baldi ◽  
Jéssica Line Farias de Lima ◽  
Isabela Gimenes da Silva ◽  
Fernanda Felicetti Perosa ◽  
Ricardo Evandro Mendes ◽  
...  

ABSTRACT: Listeria monocytogenes is a bacterium that infect humans and animals and causes a zoonotic disease characterized by encephalitis, septicemia or abortion. In addition, listeriosis leads to significant economic losses due to animal death and sacrifice. This research compared the technique of immunofluorescence (IF) and immunohistochemistry (IHC) for the diagnosis of L. monocytogenes in formalin-fixed and paraffin-embedded (FFPE) tissues. A total of 30 tissue blocks from 15 animals with history and/or lesions compatible with listeriosis were selected. For both IHC and IF, the same diluted (1:200) polyclonal primary antibody was used against L. monocytogenes serotypes 1 and 4. For IHC, a polymer secondary antibody conjugated to peroxidase (HRP) was used. For IF, samples were incubated with a fluorescein-labeled anti-rabbit IgG secondary antibody. Each sample was classified according to the presence and percentage of immunolabeling area. From 30 samples, 10 were positive at least for one technique, whereas eight samples were positive for both IHC and IF with similar score. There was strong immunolabeling in tissue samples from bovines experimentally infected with L. monocytogenes ATCC 7644, as well as in nervous tissues from naturally infected ruminants. Additionally, IF did not show any difference in sensitivity when compared to IHC. Using processed biological materials for IF, instead of fresh tissues, is a quite unique technique, since there are few protocols described. Therefore, this study demonstrated that both techniques are efficient to detect L. monocytogenes in FFPE tissues.


Medicina ◽  
2021 ◽  
Vol 57 (12) ◽  
pp. 1375
Author(s):  
Katsuhiro Masago ◽  
Shiro Fujita ◽  
Yuko Oya ◽  
Yusuke Takahashi ◽  
Hirokazu Matsushita ◽  
...  

Background and Objectives: Panel-based next-generation sequencing (NGS) has been carried out in daily clinical settings for the diagnosis and treatment guidance of patients with non-small cell lung cancer (NSCLC). The success of genomic tests including NGS depends in large part on preparing better-quality DNA or RNA; however, there are no established operating methods for preparing genomic DNA and RNA samples. Materials and Methods: We compared the following two quantitative methods, the QubitTM and NanoDropTM, using 585 surgical specimens, 278 biopsy specimens, and 82 cell block specimens of lung cancer that were used for genetic tests, including NGS. We analyzed the success rate of the genomic tests, including NGS, which were performed with DNA and RNA with concentrations that were outliers for the Qubit Fluorometer. Results: The absolute value for DNA concentrations had a tendency to be higher when measured with NanoDropTM regardless of the type of specimen; however, this was not the case for RNA. The success rate of DNA-based genomic tests using specimens with a concentration below the lower limit of QubitTM detection was as high as approximately 96%. At less than 60%, the success rate of RNA-based genomic tests, including RT-PCR, was not as satisfactory. The success rates of the AmpliSeqTM DNA panel sequencing and RNA panel sequencing were 77.8% and 91.5%, respectively. If at least one PCR amplification product could be obtained, then all RNA-based sequencing was performed successfully. Conclusions: The concentration measurements with NanoDropTM are reliable. The success rate of NGS with samples at concentrations below the limit of detection of QubitTM was relatively higher than expected, and it is worth performing PCR-based panel sequencing, especially in cases where re-biopsy cannot be performed.


2021 ◽  
Vol 10 (1) ◽  
Author(s):  
Sophia Rossouw ◽  
Hocine Bendou ◽  
Liam Bell ◽  
Jonathan Rigby ◽  
Alan Christoffels

Background: Optimal protocols for efficient and reproducible protein extraction from formalin-fixed paraffin-embedded (FFPE) tissues are not yet standardised and new techniques are continually developed and improved. The effect of polyethylene glycol (PEG) 20 000 on protein extraction efficiency has not been evaluated using human FFPE colorectal cancer tissues and there is no consensus on the protein extraction solution required for efficient, reproducible extraction.Objective: The impact of PEG 20 000 on protein extraction efficiency, reproducibility and protein selection bias was evaluated using FFPE colonic tissue via liquid chromatography tandem mass spectrometry analysis.Methods: This study was conducted from August 2017 to July 2019 using human FFPE colorectal carcinoma tissues from the Anatomical Pathology department at Tygerberg Hospital in South Africa. Samples were analysed via label-free liquid chromatography tandem mass spectrometry to determine the impact of using PEG 20 000 in the protein extraction solution. Data were assessed regarding peptide and protein identifications, method efficiency, reproducibility, protein characteristics and organisation relating to gene ontology categories.Results: Polyethylene glycol 20 000 exclusion increased peptides and proteins identifications and the method was more reproducible compared to the samples processed with PEG 20 000. However, no differences were observed with regard to protein selection bias. We found that higher protein concentrations ( 10 µg) compromised the function of PEG.Conclusion: This study indicates that protocols generating high protein yields from human FFPE tissues would benefit from the exclusion of PEG 20 000 in the protein extraction solution.


2021 ◽  
Vol 27 ◽  
Author(s):  
Zhi-Gang Yao ◽  
Zhi-Gang Wei ◽  
Xian-Kui Cheng ◽  
Guang-Hui Huang ◽  
Yuan-Yuan Zong ◽  
...  

Purpose: Currently, formalin-fixed paraffin-embedded (FFPE) tissue specimens are the conventional material for gene testing for non-small cell lung cancer (NSCLC) patients. In our study, we aimed to develop a quick gene testing procedure using fresh core needle biopsy samples from NSCLC patients.Methods: In total, 77 fresh NSCLC samples obtained from core needle biopsy were evaluated by frozen section examination. If the NSCLC diagnosis and adequate tumor cell counts were confirmed by histopathology, the fresh tissues were used to extract DNA and subsequent gene testing by ARMS-PCR. Meanwhile, the paired FFPE core needle biopsy samples from 30 NSCLC patients also underwent gene testing.Results: In total, 77 fresh samples showed an EGFR mutation rate of 61.0%, higher than the levels in the Asian. Following a comparison of gene testing results with fresh tissues and paired FFPE tissues from the 30 patients, no significant difference in the DNA concentration extracted from fresh tissues and FFPE tissues was found. However, DNA purity was significantly higher in fresh tissues than that in FFPE tissues. Gene testing detected the same gene mutations in 93.3% of cases in fresh tissues and paired FFPE tissues. The gene testing procedure using fresh biopsy samples greatly shortens the waiting time of patients.Conclusion: The multi-gene mutation testing using fresh core needle biopsy samples from NSCLC patients is a reasonable, achievable, and quick approach. Fresh tissues may serve as a potential alternative to FFPE tissues for gene testing in NSCLC patients.


2021 ◽  
Vol 12 ◽  
Author(s):  
Sizun Jiang ◽  
Nilanjan Mukherjee ◽  
Richard S. Bennett ◽  
Han Chen ◽  
James Logue ◽  
...  

Non-human primate (NHP) animal models are an integral part of the drug research and development process. For some biothreat pathogens, animal model challenge studies may offer the only possibility to evaluate medical countermeasure efficacy. A thorough understanding of host immune responses in such NHP models is therefore vital. However, applying antibody-based immune characterization techniques to NHP models requires extensive reagent development for species compatibility. In the case of studies involving high consequence pathogens, further optimization for use of inactivated samples may be required. Here, we describe the first optimized CO-Detection by indEXing (CODEX) multiplexed tissue imaging antibody panel for deep profiling of spatially resolved single-cell immune responses in rhesus macaques. This 21-marker panel is composed of a set of 18 antibodies that stratify major immune cell types along with a set three Ebola virus (EBOV)-specific antibodies. We validated these two sets of markers using immunohistochemistry and CODEX in fully inactivated Formalin-Fixed Paraffin-Embedded (FFPE) tissues from mock and EBOV challenged macaques respectively and provide an efficient framework for orthogonal validation of multiple antibody clones using CODEX multiplexed tissue imaging. We also provide the antibody clones and oligonucleotide tag sequences as a valuable resource for other researchers to recreate this reagent set for future studies of tissue immune responses to EBOV infection and other diseases.


Molecules ◽  
2021 ◽  
Vol 26 (23) ◽  
pp. 7234
Author(s):  
Shuang Meng ◽  
Wenwen Xia ◽  
Li Xia ◽  
Li Zhou ◽  
Jing Xu ◽  
...  

Renal amyloidosis typically manifests albuminuria, nephrotic-range proteinuria, and ultimately progresses to end-stage renal failure if diagnosed late. Different types of renal amyloidosis have completely different treatments and outcomes. Therefore, amyloidosis typing is essential for disease prognosis, genetic counseling and treatment. Thirty-six distinct proteins currently known to cause amyloidosis that have been described as amyloidogenic precursors, immunohistochemistry (IHC) or immunofluorescence (IF), can be challenging for amyloidosis typing especially in rare or hereditary amyloidosis in clinical practice. We made a pilot study that optimized the proteomics pre-processing procedures for trace renal amyloidosis formalin-fixed paraffin-embedded (FFPE) tissue samples, combined with statistical and bioinformatics analysis to screen out the amyloidosis-related proteins to accurately type or subtype renal amyloidosis in order to achieve individual treatment. A sensitive, specific and reliable FFPE-based proteomics analysis for trace sample manipulation was developed for amyloidosis typing. Our results not only underlined the great promise of traditional proteomics and bioinformatics analysis using FFPE tissues for amyloidosis typing, but also proved that retrospective diagnosis and analysis of previous cases laid a solid foundation for personalized treatment.


2021 ◽  
Vol 11 (23) ◽  
pp. 11108
Author(s):  
Omid Azimzadeh ◽  
Maria Gomolka ◽  
Mandy Birschwilks ◽  
Shin Saigusa ◽  
Bernd Grosche ◽  
...  

Archival formalin-fixed, paraffin-embedded (FFPE) tissues and their related diagnostic records are an invaluable source of biological information. The archival samples can be used for retrospective investigation of molecular fingerprints and biomarkers of diseases and susceptibility. Radiobiological archives were set up not only following clinical performance such as cancer diagnosis and therapy but also after accidental and occupational radiation exposure events where autopsies or cancer biopsies were sampled. These biobanks provide unique and often irreplaceable materials for the understanding of molecular mechanisms underlying radiation-related biological effects. In recent years, the application of rapidly evolving “omics” platforms, including transcriptomics, genomics, proteomics, metabolomics and sequencing, to FFPE tissues has gained increasing interest as an alternative to fresh/frozen tissue. However, omics profiling of FFPE samples remains a challenge mainly due to the condition and duration of tissue fixation and storage, and the extraction methods of biomolecules. Although biobanking has a long history in radiation research, the application of omics to profile FFPE samples available in radiobiological archives is still young. Application of the advanced omics technologies on archival materials provides a new opportunity to understand and quantify the biological effects of radiation exposure. These newly generated omics data can be well integrated into results obtained from earlier experimental and epidemiological analyses to shape a powerful strategy for modelling and evaluating radiation effects on health outcomes. This review aims to give an overview of the unique properties of radiation biobanks and their potential impact on radiation biology studies. Studies recently performed on FFPE samples from radiobiology archives using advanced omics are summarized. Furthermore, the compatibility of archived FFPE tissues for omics analysis and the major challenges that lie ahead are discussed.


2021 ◽  
Author(s):  
Shelsa S. Marcel ◽  
Austin L. Quimby ◽  
Melodie P. Noel ◽  
Oscar C. Jaimes ◽  
Marjan Mehrab-Mohseni ◽  
...  

Chromatin accessibility states that influence gene expression and other nuclear processes can be altered in disease. The constellation of transcription factors and chromatin regulatory complexes in cells results in characteristic patterns of chromatin accessibility. The study of these patterns in tissues has been limited because existing chromatin accessibility assays are ineffective for archival formalin-fixed, paraffin-embedded (FFPE) tissues. We have developed a method to efficiently extract intact chromatin from archival tissue via enhanced cavitation with a nanodroplet reagent consisting of a lipid shell with a liquid perfluorocarbon core. Inclusion of nanodroplets during the extraction of chromatin from FFPE tissues enhances the recovery of intact accessible and nucleosome-bound chromatin. We show that the addition of nanodroplets to the chromatin accessibility assay formaldehyde-assisted isolation of regulatory elements (FAIRE), does not affect the accessible chromatin signal. Applying the technique to FFPE human tumor xenografts, we identified tumor-relevant regions of accessible chromatin shared with those identified in primary tumors. Further, we deconvoluted non-tumor signal to identify cellular components of the tumor microenvironment. Incorporation of this method of enhanced cavitation into FAIRE offers the potential for extending chromatin accessibility to clinical diagnosis and personalized medicine, while also enabling the exploration of gene regulatory mechanisms in archival samples.


2021 ◽  
Vol 39 (1) ◽  
Author(s):  
Gaurav Verma ◽  
Nikita Aggarwal ◽  
Suhail Chhakara ◽  
Abhishek Tyagi ◽  
Kanchan Vishnoi ◽  
...  

Sign in / Sign up

Export Citation Format

Share Document