scholarly journals Cloning, Expression, and Sequence Analysis of the ORF4 Gene of the Porcine Reproductive and Respiratory Syndrome Virus MN-1b

1994 ◽  
Vol 6 (3) ◽  
pp. 293-296 ◽  
Author(s):  
Jimmy Kwang ◽  
Hyun Soo Kim ◽  
Han S. Joo

Porcine reproductive and respiratory syndrome virus (PRRSV) MN-1b strain open reading frame 4 (ORF4) has been cloned, sequenced, and expressed in Escherichia coli. The homologies of nucleotide and amino acid sequences between MN-1b (US isolate) and LV (European isolate) are 69% and 64%, respectively. The data also showed that ORF4 of MN-1b is 36 bases shorter than that of LV. Western blot analysis of expressed recombinant ORF4 protein reacted with 65% (26/40) of PRRSV-infected pig sera tested. These results demonstrated that ORF4 of PRRSV may not be a well-conserved region.

1998 ◽  
Vol 331 (3) ◽  
pp. 953-958 ◽  
Author(s):  
Hiro-omi TAMURA ◽  
Yuki HARADA ◽  
Atsushi MIYAWAKI ◽  
Katsuhiko MIKOSHIBA ◽  
Michio MATSUI

Previously we demonstrated the presence of phenol sulphotransferase (P-ST) in mouse nasal cytosols and identified its zonal location in mouse nasal cavity by staining with an antiserum raised against a rat liver P-ST isoenzyme, PSTg. In the present study a cDNA was isolated from a mouse olfactory cDNA library by immunological screening with the antiserum. The isolated cDNA consisted of 1347 bp with a 912 bp open reading frame encoding a 304-residue polypeptide. Both the nucleotide and deduced amino acid sequences of the cDNA were 94% identical with those of a rat liver P-ST isoenzyme, ST1C1. The expressed enzyme in Escherichia coli displayed high P-ST activity towards phenolic odorants such as eugenol and guaiacol, and it showed a high N-hydroxy-2-acetylaminofluorene sulphation activity in comparison with the rat ST1C1 enzyme. These results indicate that the olfactory P-ST encoded by the cDNA is a mouse orthologue of rat ST1C1; however, expression of the olfactory P-ST mRNA is specific for nasal tissues as revealed by reverse transcriptase-mediated PCR (RT–PCR).


2000 ◽  
Vol 68 (5) ◽  
pp. 2720-2727 ◽  
Author(s):  
Robert A. Kingsley ◽  
Karin van Amsterdam ◽  
Naomi Kramer ◽  
Andreas J. Bäumler

ABSTRACT Little is known about factors which enable Salmonellaserotypes to circulate within populations of livestock and domestic fowl. We have identified a DNA region which is present inSalmonella serotypes commonly isolated from livestock and domestic fowl (S. enterica subspecies I) but absent from reptile-associated Salmonella serotypes (S. bongori and S. enterica subspecies II to VII). This DNA region was cloned from Salmonella serotype Typhimurium and sequence analysis revealed the presence of a 6,105-bp open reading frame, designated shdA, whose product's deduced amino acid sequence displayed homology to that of AIDA-I from diarrheagenicEscherichia coli, MisL of serotype Typhimurium, and IcsA ofShigella flexneri. The shdA gene was located adjacent to xseA at 52 min, in a 30-kb DNA region which is not present in Escherichia coli K-12. A serotype Typhimurium shdA mutant was shed with the feces in reduced numbers and for a shorter period of time compared to its isogenic parent. A possible role for the shdA gene during the expansion in host range of S. enterica subspecies I to include warm-blooded vertebrates is discussed.


1986 ◽  
Vol 6 (5) ◽  
pp. 1711-1721
Author(s):  
E M McIntosh ◽  
R H Haynes

The dCMP deaminase gene (DCD1) of Saccharomyces cerevisiae has been isolated by screening a Sau3A clone bank for complementation of the dUMP auxotrophy exhibited by dcd1 dmp1 haploids. Plasmid pDC3, containing a 7-kilobase (kb) Sau3A insert, restores dCMP deaminase activity to dcd1 mutants and leads to an average 17.5-fold overproduction of the enzyme in wild-type cells. The complementing activity of the plasmid was localized to a 4.2-kb PvuII restriction fragment within the Sau3A insert. Subcloning experiments demonstrated that a single HindIII restriction site within this fragment lies within the DCD1 gene. Subsequent DNA sequence analysis revealed a 936-nucleotide open reading frame encompassing this HindIII site. Disruption of the open reading frame by integrative transformation led to a loss of enzyme activity and confirmed that this region constitutes the dCMP deaminase gene. Northern analysis indicated that the DCD1 mRNA is a 1.15-kb poly(A)+ transcript. The 5' end of the transcript was mapped by primer extension and appears to exhibit heterogeneous termini. Comparison of the amino acid sequence of the T2 bacteriophage dCMP deaminase with that deduced for the yeast enzyme revealed a limited degree of homology which extends over the entire length of the phage polypeptide (188 amino acids) but is confined to the carboxy-terminal half of the yeast protein (312 amino acids). A potential dTTP-binding site in the yeast and phage enzymes was identified by comparison of homologous regions with the amino acid sequences of a variety of other dTTP-binding enzymes. Despite the role of dCMP deaminase in dTTP biosynthesis, Northern analysis revealed that the DCD1 gene is not subject to the same cell cycle-dependent pattern of transcription recently found for the yeast thymidylate synthetase gene (TMP1).


2000 ◽  
Vol 182 (21) ◽  
pp. 6243-6246 ◽  
Author(s):  
Haitao Zhang ◽  
George T. Javor

ABSTRACT The open reading frame at 86.7 min on the Escherichia coli chromosome, “yigC,” complemented aubiD mutant strain, AN66, indicating that yigCis the ubiD gene. The gene product, a 497-amino-acid-residue protein, showed extensive homology to the UPF 00096 family of proteins in the Swiss-Prot database.


1998 ◽  
Vol 42 (2) ◽  
pp. 436-439 ◽  
Author(s):  
T. R. Walsh ◽  
W. A. Neville ◽  
M. H. Haran ◽  
D. Tolson ◽  
D. J. Payne ◽  
...  

ABSTRACT The Aeromonas veronii bv. sobria metallo-β-lactamase gene, imiS, was cloned. The imiS open reading frame extends for 762 bp and encodes a protein of 254 amino acids with a secreted modified protein of 227 amino acids and a predicted pI of 8.1. To confirm the predicted sequence, purified ImiS was digested and the resulting peptides were identified, yielding an identical sequence for ImiS, with 98% identity to CphA. Both possessed the putative active-site sequence Asn-Tyr-His-Thr-Asp at positions 88 to 92, which is unique to the Aeromonas metallo-β-lactamases.


2004 ◽  
Vol 70 (3) ◽  
pp. 1570-1575 ◽  
Author(s):  
Dae Heoun Baek ◽  
Jae Jun Song ◽  
Seok-Joon Kwon ◽  
Chung Park ◽  
Chang-Min Jung ◽  
...  

ABSTRACT A new thermostable dipeptidase gene was cloned from the thermophile Brevibacillus borstelensis BCS-1 by genetic complementation of the d-Glu auxotroph Escherichia coli WM335 on a plate containing d-Ala-d-Glu. Nucleotide sequence analysis revealed that the gene included an open reading frame coding for a 307-amino-acid sequence with an M r of 35,000. The deduced amino acid sequence of the dipeptidase exhibited 52% similarity with the dipeptidase from Listeria monocytogenes. The enzyme was purified to homogeneity from recombinant E. coli WM335 harboring the dipeptidase gene from B. borstelensis BCS-1. Investigation of the enantioselectivity (E) to the P1 and P1′ site of Ala-Ala revealed that the ratio of the specificity constant (k cat /Km ) for l-enantioselectivity to the P1 site of Ala-Ala was 23.4 � 2.2 [E = (k cat /Km ) l,d /(k cat /Km ) d,d ], while the d-enantioselectivity to the P1′ site of Ala-Ala was 16.4 � 0.5 [E = (k cat /Km ) l,d /(k cat /Km ) l,l ] at 55�C. The enzyme was stable up to 55�C, and the optimal pH and temperature were 8.5 and 65�C, respectively. The enzyme was able to hydrolyze l-Asp-d-Ala, l-Asp-d-AlaOMe, Z-d-Ala-d-AlaOBzl, and Z-l-Asp-d-AlaOBzl, yet it could not hydrolyze d-Ala-l-Asp, d-Ala-l-Ala, d-AlaNH2, and l-AlaNH2. The enzyme also exhibited β-lactamase activity similar to that of a human renal dipeptidase. The dipeptidase successfully synthesized the precursor of the dipeptide sweetener Z-l-Asp-d-AlaOBzl.


2020 ◽  
Vol 16 (1) ◽  
Author(s):  
Karol Stasiak ◽  
Magdalena Dunowska ◽  
Jerzy Rola

Abstract Background Equid herpesvirus 1 (EHV-1) infections are endemic worldwide, including Poland. Many are subclinical, but some are associated with respiratory disease, abortion, neonatal foal death, or neurological disease. We describe an outbreak of abortions in Arabian mares at a well-managed State stud farm in Poland. Case presentation Eight of 30 pregnant mares aborted and one gave birth to a weak foal that died within 72 h after birth. EHV-1 was isolated from all fetuses as well as from the diseased foal. All viruses belonged to the N752 variant based on the predicted open reading frame (ORF) 30 amino acid sequence. All were identical to each other and to previous EHV-1 viruses from the same stud based on the ORF68 sequence analysis. The outbreak coincided with the lapse in the routine yearly EHV-1/4 vaccinations of the mares. Conclusions Multiple abortion due to EHV-1 infection can occur in well-managed groups of horses. Reactivation of latent EHV-1 in one of the resident mares followed by a horizontal spread was considered the most likely explanation for the outbreak. Routine vaccination is an important part of a herd-heath program.


1986 ◽  
Vol 6 (5) ◽  
pp. 1711-1721 ◽  
Author(s):  
E M McIntosh ◽  
R H Haynes

The dCMP deaminase gene (DCD1) of Saccharomyces cerevisiae has been isolated by screening a Sau3A clone bank for complementation of the dUMP auxotrophy exhibited by dcd1 dmp1 haploids. Plasmid pDC3, containing a 7-kilobase (kb) Sau3A insert, restores dCMP deaminase activity to dcd1 mutants and leads to an average 17.5-fold overproduction of the enzyme in wild-type cells. The complementing activity of the plasmid was localized to a 4.2-kb PvuII restriction fragment within the Sau3A insert. Subcloning experiments demonstrated that a single HindIII restriction site within this fragment lies within the DCD1 gene. Subsequent DNA sequence analysis revealed a 936-nucleotide open reading frame encompassing this HindIII site. Disruption of the open reading frame by integrative transformation led to a loss of enzyme activity and confirmed that this region constitutes the dCMP deaminase gene. Northern analysis indicated that the DCD1 mRNA is a 1.15-kb poly(A)+ transcript. The 5' end of the transcript was mapped by primer extension and appears to exhibit heterogeneous termini. Comparison of the amino acid sequence of the T2 bacteriophage dCMP deaminase with that deduced for the yeast enzyme revealed a limited degree of homology which extends over the entire length of the phage polypeptide (188 amino acids) but is confined to the carboxy-terminal half of the yeast protein (312 amino acids). A potential dTTP-binding site in the yeast and phage enzymes was identified by comparison of homologous regions with the amino acid sequences of a variety of other dTTP-binding enzymes. Despite the role of dCMP deaminase in dTTP biosynthesis, Northern analysis revealed that the DCD1 gene is not subject to the same cell cycle-dependent pattern of transcription recently found for the yeast thymidylate synthetase gene (TMP1).


1991 ◽  
Vol 277 (2) ◽  
pp. 469-475 ◽  
Author(s):  
R Dumas ◽  
M Lebrun ◽  
R Douce

Acetohydroxy acid reductoisomerase (AHRI), the second enzyme in the parallel isoleucine/valine-biosynthetic pathway, catalyses an unusual two-step reaction in which the substrate, either 2-acetolactate or 2-aceto-2-hydroxybutyrate, is converted via an alkyl migration and an NADPH-dependent reduction to give 2,3-dihydroxy-3-methylbutyrate or 2,3-dihydroxy-3-methylvalerate respectively. We have isolated and characterized a full-length cDNA from a lambda gt11 spinach library encoding the complete acetohydroxy acid reductoisomerase protein precursor. The 2050-nucleotide sequence contains a 1785-nucleotide open reading frame. The derived amino acid sequence indicates that the protein precursor consists of 595 amino acid residues including a presequence peptide of 72 amino acid residues. The N-terminal sequence of the first 16 amino acid residues of the purified AHRI confirms the identity of the cDNA. The derived amino acid sequence from this open reading frame shows 23% identity with the deduced amino acid sequences of the Escherichia coli and Saccharomyces cerevisiae AHRI proteins. There are two blocks of conserved amino acid residues in these three proteins. One of these is a sequence similar to the ‘fingerprint’ region of the NAD(P)H-binding site found in a large number of NAD(P)H-dependent oxidoreductases. The other, a short sequence (Lys-Xaa-Xaa-Xaa-Xaa-Xaa-Xaa-Xaa-Ser-His-Gly-Phe) containing the amino acids lysine and histidine, could well be the catalytic site of the first step of the AHRI reaction. Southern-blot analysis indicated that AHRI is encoded by a single gene per haploid genome of about 7.5 kbp containing at least four introns.


Sign in / Sign up

Export Citation Format

Share Document