Time-domain hybrid global–local concept for guided-wave propagation with piezoelectric wafer active sensor

2013 ◽  
Vol 24 (15) ◽  
pp. 1897-1911 ◽  
Author(s):  
Matthieu Gresil ◽  
Victor Giurgiutiu
2013 ◽  
Vol 117 (1196) ◽  
pp. 971-995 ◽  
Author(s):  
M. Gresil ◽  
V. Giurgiutiu

AbstractPiezoelectric wafer active sensors (PWAS) are lightweight and inexpensive transducers that enable a large class of structural health monitoring (SHM) applications such as: (a) embedded guided wave ultrasonics, i.e., pitch-catch, pulse-echo, phased arrays; (b) high-frequency modal sensing, i.e., electro-mechanical impedance method; and (c) passive detection. The focus of this paper is on the challenges posed by using PWAS transducers in the composite laminate structures as different from the metallic structures on which this methodology was initially developed. After a brief introduction, the paper reviews the PWAS-based SHM principles. It follows with a discussion of guided wave propagation in composites and PWAS tuning effects. Then, the mechanical effect is discussed on the integration of piezoelectric wafer inside the laminate using a compression after impact. Experiments were performed on a glass fibre laminate, employing PWAS to measure the attenuation coefficient. Finally, the paper presents some experimental and multi-physics finite element method (MP-FEM) results on guided wave propagation in composite laminate specimens.


2008 ◽  
Vol 32 ◽  
pp. 289-292
Author(s):  
Ye Lu ◽  
Lin Ye ◽  
Dong Wang ◽  
Guang Meng

A piezoelectric active sensor network is configured to collect the wave scattering from a throughthickness hole on an aluminium rectangular tube. It is found that guided waves are capable of propagating across the tube edges, while keeping the sensitivity to the damage even not on surfaces where the actuator and sensor are located. Signal correlation between the intact and damaged structure is evaluated and the probability distribution of damage is thus achieved on the unfolded tube surface.


Author(s):  
Yanzheng Wang ◽  
Elias Perras ◽  
Mikhail V. Golub ◽  
Sergey I. Fomenko ◽  
Chuanzeng Zhang ◽  
...  

Sign in / Sign up

Export Citation Format

Share Document