An experimental method to design piezoelectric energy harvesting skin using operating deflection shapes and its application for self-powered operation of a wireless sensor network

2015 ◽  
Vol 26 (9) ◽  
pp. 1128-1137 ◽  
Author(s):  
Hongjin Kim ◽  
Sowon Lee ◽  
Chulmin Cho ◽  
Jae Eun Kim ◽  
Byeng Dong Youn ◽  
...  
Author(s):  
Byeng Dong Youn ◽  
Heonjun Yoon ◽  
Hongjin Kim ◽  
Byung Chang Jung ◽  
Chulmin Cho ◽  
...  

Energy harvesting (EH) which scavenges electric power from ambient, otherwise wasted, energy sources has been explored to develop self-powered portable electronic devices. Vibration energy, a widely available ambient energy source, can be converted into electric power using a piezoelectric energy harvester that generates electric potential in response to applied mechanical strains. As a compact and durable design paradigm, a piezoelectric energy harvesting skin (PEH skin) which can be directly attached onto the surface of a vibrating engineered system has been proposed to scavenge electric power from vibration energy. The goal of this chapter is to describe the core technologies for the realization of the PEH skin from a system integration perspective as four parts: (a) modeling, (b) design, (c) manufacturing, and (d) demonstration. The readers will be able to learn the entire procedure of developing the PEH skin and applying it to self-powered wireless sensor network (WSN) through this chapter.


Author(s):  
Hyun Jun Jung ◽  
Soobum Lee ◽  
Hamid Jabbar ◽  
Se Yeong Jeong ◽  
Tae Hyun Sung

This paper proposes a self-start piezoelectric energy harvesting circuit with an undervoltage-lockout (UVLO) converter for a wireless sensor network (WSN). First, a self-start circuit with mini piezoelectric energy harvester (PEH) is designed to supply the power for operation of the oscillator without battery. The experimental results show that a batteryless self-start circuit successfully operates the oscillator with mini-PEH, and self-starting time is 0.45 s. Second, this paper proposes an adjustable UVLO converter that can supply the power even if a power consumption of a wireless sensor node is higher than generated power from PEH. The experimental result shows the adjustable UVLO converter supplies 45 mW for 0.12 s after charging the output power of an impedance matching circuit (1.7 mW) for 10 s. This paper shows that the proposed circuit successfully overcomes challenging issues — self-start and lower power generation — for powering WSN.


Sensors ◽  
2021 ◽  
Vol 21 (9) ◽  
pp. 3151
Author(s):  
Shuo Yang ◽  
Bin Wu ◽  
Xiucheng Liu ◽  
Mingzhi Li ◽  
Heying Wang ◽  
...  

In this study, a novel piezoelectric energy harvester (PEH) based on the array composite spherical particle chain was constructed and explored in detail through simulation and experimental verification. The power test of the PEH based on array composite particle chains in the self-powered system was realized. Firstly, the model of PEH based on the composite spherical particle chain was constructed to theoretically realize the collection, transformation, and storage of impact energy, and the advantages of a composite particle chain in the field of piezoelectric energy harvesting were verified. Secondly, an experimental system was established to test the performance of the PEH, including the stability of the system under a continuous impact load, the power adjustment under different resistances, and the influence of the number of particle chains on the energy harvesting efficiency. Finally, a self-powered supply system was established with the PEH composed of three composite particle chains to realize the power supply of the microelectronic components. This paper presents a method of collecting impact energy based on particle chain structure, and lays an experimental foundation for the application of a composite particle chain in the field of piezoelectric energy harvesting.


Circuit World ◽  
2021 ◽  
Vol ahead-of-print (ahead-of-print) ◽  
Author(s):  
Guoda Wang ◽  
Ping Li ◽  
Yumei Wen ◽  
Zhichun Luo

Purpose Existing control circuits for piezoelectric energy harvesting (PEH) suffers from long startup time or high power consumption. This paper aims to design an ultra-low power control circuit that can harvest weak ambient vibrational energy on the order of several microwatts to power heavy loads such as wireless sensors. Design/methodology/approach A self-powered control circuit is proposed, functioning for very brief periods at the maximum power point, resulting in a low duty cycle. The circuit can start to function at low input power thresholds and can promptly achieve optimal operating conditions when cold-starting. The circuit is designed to be able to operate without stable DC power supply and powered by the piezoelectric transducers. Findings When using the series-synchronized switch harvesting on inductor circuit with a large 1 mF energy storage capacitor, the proposed circuit can perform 322% better than the standard energy harvesting circuit in terms of energy harvested. This control circuit can also achieve an ultra-low consumption of 0.3 µW, as well as capable of cold-starting with input power as low as 5.78 µW. Originality/value The intermittent control strategy proposed in this paper can drastically reduce power consumption of the control circuit. Without dedicated cold-start modules and DC auxiliary supply, the circuit can achieve optimal efficiency within one input cycle, if the input signal is larger than voltage threshold. The proposed control strategy is especially favorable for harvesting energy from natural vibrations and can be a promising solution for other PEH circuits as well.


Sign in / Sign up

Export Citation Format

Share Document