An electromagnetic energy harvesting circuits for self-powered wireless sensor network

Author(s):  
Ping Li ◽  
Yumei Wen ◽  
Pangang Liu ◽  
Xinshen Li ◽  
Chaobo Jia
2016 ◽  
Vol 249 ◽  
pp. 77-84 ◽  
Author(s):  
Salar Chamanian ◽  
Hasan Uluşan ◽  
Özge Zorlu ◽  
Sajjad Baghaee ◽  
Elif Uysal-Biyikoglu ◽  
...  

2019 ◽  
Vol 8 (1) ◽  
pp. 18 ◽  
Author(s):  
Kankan Li ◽  
Xuefeng He ◽  
Xingchang Wang ◽  
Senlin Jiang

The Internet of things requires long-life wireless sensor nodes powered by the harvested energy from environments. This paper proposes a nonlinear electromagnetic energy harvesting system which may be used to construct fully self-powered wireless sensor nodes. Based on a nonlinear electromagnetic energy harvester (EMEH) with high output voltage, the model of a nonlinear interface circuit is derived and a power management circuit (PMC) is designed. The proposed PMC uses a buck–boost direct current-direct current (DC–DC) converter to match the load resistance of the nonlinear interface circuit. It includes two open-loop branches, which is beneficial to the optimization of the impedance matching. The circuit is able to work even if the stored energy is completely drained. The energy harvesting system successfully powered a wireless sensor node. Experimental results show that, under base excitations of 0.3 g and 0.4 g (where 1 g = 9.8 m·s−2) at 8 Hz, the charging efficiencies of the proposed circuit are 172% and 28.5% higher than that of the classic standard energy-harvesting (SEH) circuit. The experimental efficiency of the PMC is 41.7% under an excitation of 0.3 g at 8 Hz.


Author(s):  
Byeng Dong Youn ◽  
Heonjun Yoon ◽  
Hongjin Kim ◽  
Byung Chang Jung ◽  
Chulmin Cho ◽  
...  

Energy harvesting (EH) which scavenges electric power from ambient, otherwise wasted, energy sources has been explored to develop self-powered portable electronic devices. Vibration energy, a widely available ambient energy source, can be converted into electric power using a piezoelectric energy harvester that generates electric potential in response to applied mechanical strains. As a compact and durable design paradigm, a piezoelectric energy harvesting skin (PEH skin) which can be directly attached onto the surface of a vibrating engineered system has been proposed to scavenge electric power from vibration energy. The goal of this chapter is to describe the core technologies for the realization of the PEH skin from a system integration perspective as four parts: (a) modeling, (b) design, (c) manufacturing, and (d) demonstration. The readers will be able to learn the entire procedure of developing the PEH skin and applying it to self-powered wireless sensor network (WSN) through this chapter.


Author(s):  
Aditi Paul ◽  
Indu Pandey

Energy harvesting wireless sensor network (EH-WSN) harvests energy from the environment to supply power to the sensor nodes which apparently enhances their lifetime. However, the unpredictable nature of the resources throws challenges to the sustainability of energy supply for the continuous network operation. This creates a gap between unstable energy harvesting rates & energy requirements of the nodes of the network. The state-of-the-art algorithms proposed so far to address this problem domain are not able to bridge the gap fully to standardize the framework. Hence there is considerable scope of research to create a trade-off between EH techniques and specially designed protocols for in EH-WSN. Current study evaluates the performance and efficiency of some futuristic techniques which incorporate advanced tools and algorithms. The study aims to identify the strength and weaknesses of the proposed techniques which can emerge specific research requirement in this field. Finally, we propose a research direction towards Multi-source Hybrid EH-WSN (MHEHWSN) which is able to maximize energy availability and functional efficiency. The scope of this study is to develop a notion of a framework which eliminates the limitations of very recent techniques of EH-WSN by including multiple energy resources to extract required energy even in presence of unpredictability. However, keeping in mind the ease of use and less complex structure Multi-source hybrid EH technique requires a careful design paradigm.


Sign in / Sign up

Export Citation Format

Share Document