Effectiveness of the shape memory alloy reinforcement in concrete coupled shear walls

2016 ◽  
Vol 28 (5) ◽  
pp. 640-652 ◽  
Author(s):  
Mehdi Ghassemieh ◽  
Moein Rezapour ◽  
Vahid Sadeghi

The use of shape memory alloys as a rebar in concrete structures has been receiving increasing attention among researchers. In this study, it is intended to evaluate the application of superelastic Nitinol in reducing the damage to the coupling beams and opening corners within a concrete shear wall. Abaqus finite element software was utilized to develop three verified coupled shear wall models. First, a model without diagonal and shape memory alloy rebars is developed to assess conventional shear walls with openings. Steel diagonal rebars are embedded in the coupling beams of the second model, and shape memory alloy diagonal rebars are embedded in the coupling beams of the third model. Shape memory alloy is also implemented in the opening corners of the third model. All models are subjected to cyclic loading to evaluate the concrete damage. Results indicated that the diagonal rebars reduced damage to the coupling beam and opening corners. The damages were the least when shape memory alloy diagonal rebars are utilized in the model. The superelastic behavior of the shape memory alloy also reduced permanent displacement of the shear wall subjected to substantial lateral loadings.

Author(s):  
Guoqiang LI ◽  
Mengde PANG ◽  
Feifei Sun ◽  
Liulian LI ◽  
Jianyun SUN

Coupled shear walls are widely used in high rise buildings, since they can not only provide efficient lateral stiffness but also behave outstanding energy dissipation ability especially for earthquake-resistance. Traditionally, the coupling beams are made of reinforced concrete, which are prone to shear failure due to low aspect ratio and greatly reduce the efficiency and ability of energy dissipation.  For overcoming the shortcoming of concrete reinforced coupling beams (RCB), an innovative steel coupling beams called two-level-yielding steel coupling beam (TYSCB) is invented to balance the demand of stiffness and energy dissipation for coupled shear walls. TYSCBs are made of two parallel steel beams with yielding at two different levels.  To verify and investigate the aseismic behaviour improvement of TYSCB-coupled shear walls, two 1/3 scale, 10-storey coupled shear wall specimens with TYSCB and RCB were tested under both gravity and lateral displacement reversals. These two specimens were designed with the same bearing capacity, thus to be easier to compare. The experimental TYSCB specimen demonstrated more robust cyclic performance. Both specimens reached 1% lateral drift, however, the TYSCB-coupled shear wall showed minimal strength degradation. Additionally, a larger amount of energy was dissipated during each test of the TYSCB specimen, compared with the RCB specimen. Based on the experimental results, design recommendations are provided.


2019 ◽  
Vol 11 (3) ◽  
pp. 867
Author(s):  
Yun Chen ◽  
Junzuo Li ◽  
Zheng Lu

The coupled shear wall with replaceable coupling beams is a current research hotspot, while still lacking comprehensive studies that combine both experimental and numerical approaches to describe the global performance of the structural system. In this paper, hybrid coupled shear walls (HSWs) with replaceable coupling beams (RCBs) are studied. The middle part of the coupling beam is replaced with a replaceable “fuse”. Four ½-scale coupled shear wall specimens including a conventional reinforced concrete shear wall (CSW) and three HSWs (F1SW/F2SW/F3SW) with different kinds of replaceable “fuses” (Fuse 1/Fuse 2/Fuse 3) are tested through cyclic loading. Fuse 1 is an I-shape steel with a rhombic opening at the web; Fuse 2 is a double-web I-shape steel with lead filled in the gap between the two webs; Fuse 3 consists of two parallel steel tubes filled by lead. The comparison of seismic properties of the four shear walls in terms of failure mechanism, hysteretic response, strength degradation, stiffness degradation, energy consumption, and strain response is presented. The nonlinear finite element analysis of four shear walls is conducted by ABAQUS software. The deformation process, yielding sequence of components, skeleton curves, and damage distribution of the walls are simulated and agree well with the experimental results. The primary benefit of HSWs is that the damage of the coupling beam is concentrated at the replaceable “fuse”, while other parts remain intact. Besides, because the “fuse” can dissipate much energy, the damage of the wall-piers is also alleviated. In addition, among the three HSWs, F1SW possesses the best ductility and load retention capacity while F2SW possesses the best energy dissipation capacity. Based on this comprehensive study, some suggestions for the conceptual design of HSWs are further proposed.


2011 ◽  
Vol 2011 (0) ◽  
pp. _OS2103-1_-_OS2103-2_
Author(s):  
Tatsuya USHIRODA ◽  
Takaei YAMAMOTO ◽  
Hiroki CHO ◽  
Toshio SAKUMA

2013 ◽  
Vol 423-426 ◽  
pp. 1506-1510
Author(s):  
De Jian Yang ◽  
Zong Chen

The structural system and seismic performance of the composite shear wall are analyzed based on the horizontal load model tests. The test models are three groups of combined shear walls with shear span of 1.5, including an ordinary shear wall, a shear wall with vertical steel plates and a shear wall with transverse steel plates. The finite element software ABAQUS is used to build the calculation model of the shear wall structure. And the analysis the influence of steel plates to bearing capacity, ductility, and stiffness of shear wall are carried out. The research results indicate that the combination shear wall has good seismic behaviors.


2000 ◽  
Vol 41 (4) ◽  
pp. 547-549 ◽  
Author(s):  
Hiroaki Otsuka ◽  
Kazuo Nakajima ◽  
Tadakatsu Maruyama

Sign in / Sign up

Export Citation Format

Share Document