A low-cost and efficient d33-mode piezoelectric tuned mass damper with simultaneously optimized electrical and mechanical tuning

Author(s):  
Yong-An Lai ◽  
Jin-Yeon Kim ◽  
Chuang-Sheng Walter Yang ◽  
Lap-Loi Chung

This paper proposes a low-cost and efficient piezoelectric tuned mass damper (Piezo-TMD) for structural vibration reduction and energy harvesting. The Piezo-TMD consists of not only a proof mass, piezoelectric materials deforming in the d33 mode, and an electrical resistance, but also a spring and an inductor which enable the mechanical frequency and electrical frequency of the Piezo-TMD to be tuned to the structural resonance frequency. The equations of motion of a structure with the Piezo-TMD are derived, and an optimal design procedure for the Piezo-TMD is proposed to achieve a simultaneous maximum vibration reduction and energy harvesting. The performance of the Piezo-TMD is compared with that of a conventional optimal TMD installed in a footbridge under a pedestrian loading. The simulation results show that the Piezo-TMD performs better than the optimal conventional TMD in terms of vibration reduction while efficiently converting the absorbed mechanical energy to electricity with a high energy harvesting ratio. The innovative development of simultaneously tuning the mechanical and electrical systems leads to a much lower number of PZT stacks (saving 88% of piezoelectric materials in an illustrated case). The parametric study shows that the Piezo-TMD achieves the best performance when the optimal values for the spring stiffness, resistance, inductance, and the number of piezoelectric stacks are adopted from the proposed optimal design. If the selected spring stiffness and inductance are uncertain in a range between 0.94-1.07 times the optimal values, the vibration reduction performance of the Piezo-TMD remains similar, and the energy harvesting performance reduces less than 5%, as compared to the optimal performance. The effect of the number of piezoelectric stacks was also investigated. An insufficient number of piezoelectric stacks reduces the Piezo-TMD performance, and an excessive stack number does not improve the Piezo-TMD performance but increases the Piezo-TMD cost. Finally, the proposed Piezo-TMD employs inductance to significantly reduce the PZT stack number, thereby significantly reducing the cost of Piezo-TMDs.

Author(s):  
Duy-Chinh Nguyen

In this paper, an analytical method is presented to determine the optimal parameters of the symmetric tuned mass damper, such as the ratio between natural frequency of tuned mass damper and shaft (tuning ratio) and the ratio of the viscous coefficient of tuned mass damper (damping ratio). The optimal parameters of tuned mass damper are applied to reduce the torsional vibration of the shaft based on consideration of the vibration duration and stability criterion. The dynamic equations of the shaft are provided via Lagrangian equations, and the optimal parameters of tuned mass damper are derived by using the principle of minimum kinetic energy. Analytical and numerical examples are implemented to verify the reliability of the proposed method. The analytical and numerical results indicate that the optimal parameters of tuned mass damper have significant effects in the torsional vibration reduction of the shaft.


Author(s):  
Osamu Furuya ◽  
Hiroshi Kurabayashi

The response control techniques are mainly divided into two categories. One is a storey installation damper type using a damping element such as oil, elasto-plastic, viscoelastic, and so on. The other is an additional mass damper type such as a active and passive type tuned mass damper including a hybrid type. The device configuration of later damper type becomes larger into high-rise structure and long natural period structure because of increase of additional mass in the same case of mass ratio and necessary design stroke of moving mass. In generally, however, it is desired to be a compact size with a same vibration attenuation performance because of that there is a limitation of installation space for the device, and also it is important to be realize the application of the damper with low cost and with a necessary specification for damper performance. This study has been conducted to develop the passive tuned mass damper system using coil spring for long period structure considering a design indexes such as compact size, low cost and robustness. Although a coil spring has been well used by the tuned mass damper system as one way of solving a cost problem and performance stability, the problem of compact size still remains in case of the application to a long period structure. Multistage type is therefore proposed to the system in this time. Furthermore, the distributed TMD theory is applied to the system for robustness of the system. This paper summarizes from a basic theory to the application of proposed device to the real scale long period structure.


2011 ◽  
Vol 243-249 ◽  
pp. 5197-5203
Author(s):  
Zhi Qiang Zhang ◽  
Fei Ma

In this paper, Hefei TV Tower is used as an analytical case to examine the Hybrid control method on seismic response. Firstly, on the basis of the other’s work, a bi-model dynamic model is proposed to study the seismic response vibration hybrid control, using tuned mass damper and viscous fluid dampers. Then the optimal coefficient is obtained by considered the seismic response of upper turret as optimization objectives. According to analysis, it’s showed that the seismic responses of the tower are decreased greatly with tuned mass damper and viscous fluid dampers, and the vibration reduction effectiveness of the tower is sensitive to the spectral characteristics of earthquake wave.


2020 ◽  
Vol 17 (7) ◽  
pp. 3224-3230
Author(s):  
Hong-Won Kim ◽  
Dong-Gi Kwag

Currently, the frequency of earthquakes is increasing in Korea, but due to the lack of appropriate seismic equipment, significant damage is expected. In order to solve this problem, active tuned mass damper will be developed to reduce earthquake damage in response to seismic waves, which are combined from low frequency to high frequency. In this paper, various control methods are introduced to reduce the amplitude ratio occurring at the 1st and 2nd natural frequencies for 3 DOF nonstructural elements. Through mathematical modeling, we confirm how each control method is applied and present the problems of the existing passive tuned mass damper and suggest the active tuned mass damper. To induce an active copper reducer, the response according to the control method can be predicted with a focus on the energy change rate. The active controller receives feedback from the relative displacement and relative velocity of the structure and uses it as a variable to set the control method. The passive control method and the active control method are compared through the simulation, and excellent control performance can be confirmed in the high frequency region as well as the second natural frequency. Vibration reduction performance was confirmed by each control method and the most ideal control method was selected. The optimum vibration reduction performance can be confirmed by using the signal function to always generate 180° of phase difference with respect to the speed of the structure. Not only earthquake but also mechanical vibration, wind load, etc., it can be used in all fields where damage is caused by excitation force inherent in various complex frequencies.


Sign in / Sign up

Export Citation Format

Share Document