Creep damage and fracture of notched specimens under static and fast periodic loading

2021 ◽  
pp. 105678952199120
Author(s):  
D Breslavsky ◽  
A Senko ◽  
O Tatarinova

Creep-damage processes in notched specimens subjected to static and periodic loading are studied experimentally. Subsequent simulations were carried out using Rabotnov evolution equation. In case of dynamic creep (fast periodic loading) the constitutive equations derived by use of asymptotic and averaging methods were used. Numerical results were obtained by the combination of FEM and predictor-corrector time integration scheme. Fracture process was studied using designed numerical procedure based on the elimination of the finite elements with critical values of damage parameter. The fracture times and directions of the crack propagation were determined. The qualitative difference between processes of crack propagation in cases of static and periodic loading were observed.

2004 ◽  
Vol 01 (01) ◽  
pp. 1-15 ◽  
Author(s):  
TED BELYTSCHKO ◽  
HAO CHEN

An enrichment technique for accurately modeling two dimensional crack propagation within the framework of the finite element method is presented. The technique uses an enriched basis that spans the asymptotic dynamic crack-tip solution. The enrichment functions and their spatial derivatives are able to exactly reproduce the asymptotic displacement field and strain field for a moving crack. The stress intensity factors for Mode I and Mode II are taken as additional degrees of freedom. An explicit time integration scheme is used to solve the resulting discrete equations. Numerical simulations of linear elastodynamic problems are reported to demonstrate the accuracy and potential of the technique.


2004 ◽  
Vol 126 (1) ◽  
pp. 148-158 ◽  
Author(s):  
Xianjie Yang ◽  
C. L. Chow ◽  
K. J. Lau

In this paper, a semi-implicit time integration scheme has been developed for a damage-coupled constitutive model to characterize the mechanical behavior of 63Sn-37Pb solder material under thermo-mechanical fatigue (TMF) loading. The scheme is developed to provide an efficient numerical procedure of integration and iteration for calculating stress and other associated state variables within a strain-driven format. In particular, a novel Newton-Raphson iteration algorithm for the damage coupled constitutive material model involving von Mises viscoplastic potential function with nonlinear mixed hardening is formulated. An algorithmic tangent stiffness tensor is derived and the model is implemented numerically into a commercial finite element (FE) code ABAQUS through its user-defined material subroutine. Several numerical simulations are conducted for validation of the proposed algorithm.


2020 ◽  
Vol 35 (6) ◽  
pp. 355-366
Author(s):  
Vladimir V. Shashkin ◽  
Gordey S. Goyman

AbstractThis paper proposes the combination of matrix exponential method with the semi-Lagrangian approach for the time integration of shallow water equations on the sphere. The second order accuracy of the developed scheme is shown. Exponential semi-Lagrangian scheme in the combination with spatial approximation on the cubed-sphere grid is verified using the standard test problems for shallow water models. The developed scheme is as good as the conventional semi-implicit semi-Lagrangian scheme in accuracy of slowly varying flow component reproduction and significantly better in the reproduction of the fast inertia-gravity waves. The accuracy of inertia-gravity waves reproduction is close to that of the explicit time-integration scheme. The computational efficiency of the proposed exponential semi-Lagrangian scheme is somewhat lower than the efficiency of semi-implicit semi-Lagrangian scheme, but significantly higher than the efficiency of explicit, semi-implicit, and exponential Eulerian schemes.


The creep rupture of circumferentially notched, circular tension bars which are subjected to constant load for long periods at constant temperature is studied both experimentally and by using a time-iterative numerical procedure which describes the formation and growth of creep damage as a field quantity. The procedure models the development of failed or cracked regions of material due to the growth and linkage of grain boundary defects. Close agreement is shown between experimental and theoretical values of the representative rupture stress, of the zones of creep damage and of the development of cracks for circular (Bridgman, Studies in large plastic flow and fracture , New York: McGraw-Hill (1952)) and British Standard notched specimens (B.S. no. 3500 (1969)). The minimum section of the circular notch is shown to be subjected to relatively uniform states of multi-axial stress and damage while the B.S. notch is shown to be subjected to non-uniform stress and damage fields in which single cracks grow through relatively undamaged material. The latter situation is shown to be analogous to the growth of a discrete crack in a lightly damaged continuum. The continuum damage mechanics theory presented here is shown to be capable of accurately predicting these extreme types of behaviour.


2013 ◽  
Vol 2013 ◽  
pp. 1-21 ◽  
Author(s):  
Rita Greco ◽  
Francesco Trentadue

Response sensitivity evaluation is an important element in reliability evaluation and design optimization of structural systems. It has been widely studied under static and dynamic forcing conditions with deterministic input data. In this paper, structural response and reliability sensitivities are determined by means of the time domain covariance analysis in both classically and nonclassically damped linear structural systems. A time integration scheme is proposed for covariance sensitivity. A modulated, filtered, white noise input process is adopted to model the stochastic nonstationary loads. The method allows for the evaluation of sensitivity statistics of different quantities of dynamic response with respect to structural parameters. Finally, numerical examples are presented regarding a multistorey shear frame building.


2020 ◽  
Vol 372 ◽  
pp. 113395 ◽  
Author(s):  
R. Ortigosa ◽  
A.J. Gil ◽  
J. Martínez-Frutos ◽  
M. Franke ◽  
J. Bonet

2021 ◽  
Vol 245 ◽  
pp. 106433
Author(s):  
Mohammad Mahdi Malakiyeh ◽  
Saeed Shojaee ◽  
Saleh Hamzehei-Javaran ◽  
Klaus-Jürgen Bathe

Water ◽  
2021 ◽  
Vol 13 (6) ◽  
pp. 785
Author(s):  
Arman Rokhzadi ◽  
Musandji Fuamba

This paper studies the air pressurization problem caused by a partially pressurized transient flow in a reservoir-pipe system. The purpose of this study is to analyze the performance of the rigid column model in predicting the attenuation of the air pressure distribution. In this regard, an analytic formula for the amplitude and frequency will be derived, in which the influential parameters, particularly, the driving pressure and the air and water lengths, on the damping can be seen. The direct effect of the driving pressure and inverse effect of the product of the air and water lengths on the damping will be numerically examined. In addition, these numerical observations will be examined by solving different test cases and by comparing to available experimental data to show that the rigid column model is able to predict the damping. However, due to simplified assumptions associated with the rigid column model, the energy dissipation, as well as the damping, is underestimated. In this regard, using the backward Euler implicit time integration scheme, instead of the classical fourth order explicit Runge–Kutta scheme, will be proposed so that the numerical dissipation of the backward Euler implicit scheme represents the physical dissipation. In addition, a formula will be derived to calculate the appropriate time step size, by which the dissipation of the heat transfer can be compensated.


Sign in / Sign up

Export Citation Format

Share Document