scholarly journals Enabling Business-Driven Innovation Through Human Factors Engineering In Nuclear Power Plants

Author(s):  
Casey R. Kovesdi ◽  
Katya Le Blanc

For existing United States nuclear power plant fleet to remain economically viable, the nuclear industry needs to fundamentally change the way in which these plants are operated, maintained, and supported. A digital transformation is a key strategy to address this challenge. Though, guidance in this area is a continued effort. One framework to support innovation in the nuclear industry has taken a broader perspective by focusing on how technology can be used to meet specific business needs and work for the people and processes at hand. This work discusses the role and value of human factors engineering within this nuclear innovation framework. Human factors methods are presented here regarding how they address the phases of nuclear innovation. This work seeks to describe how human factors can be applied in nuclear innovation by strengthening the alignment of technology, people, processes, and regulations such that the needs of the business is addressed.

Author(s):  
Fei Song ◽  
Shuhui Zhang

Main control room in nuclear power plants (NPP) is a complex system where operators interact with a large amount of human system interface (HSI) resources, which is essential to the safety of the plant. In order to achieve a high standard of human factors engineering (HFE) level and ensure the effectiveness and efficiency of the system, verification and validation (V&V) should be performed before the delivery of the plant. This study firstly represents an overview of the HFE project and V&V activities applied in the nuclear industry and relative researches, then, a V&V program from an ongoing 300MW NPP project is discussed in detail. Comparative methods, existing system vs. design requirements, are mainly applied for the verification phase. In the HFE Design Verification, 10 different HFE design guideline sets and corresponding checklists are developed for the experienced reviewers to conduct a thoroughness and consistency review. Critical safety functions, risk important tasks, critical human actions and other necessary operations are verified in the Task Support Verification to insure that HSI provides all required resources for personnel tasks. Other than direct comparison, a development platform is also used to assist the analysis of display, alarm and other appropriate features. In the validation phase, an integrated system test would be completed on a full scope simulator with the participation of experienced operators from the utility as subjects and multi-discipline observers. Scenarios are carefully designed to ensure the representative of the test. Both objective and subjective results would be collected and processed mainly by the descriptive statistics method to find out the problems in the existing design. All the discrepancies found in the whole V&V would be involved in a specific database and tracked until resolved. Lessons learned from this case are discussed.


2019 ◽  
Vol 7 (2B) ◽  
Author(s):  
Vanderley Vasconcelos ◽  
Wellington Antonio Soares ◽  
Raissa Oliveira Marques ◽  
Silvério Ferreira Silva Jr ◽  
Amanda Laureano Raso

Non-destructive inspection (NDI) is one of the key elements in ensuring quality of engineering systems and their safe use. This inspection is a very complex task, during which the inspectors have to rely on their sensory, perceptual, cognitive, and motor skills. It requires high vigilance once it is often carried out on large components, over a long period of time, and in hostile environments and restriction of workplace. A successful NDI requires careful planning, choice of appropriate NDI methods and inspection procedures, as well as qualified and trained inspection personnel. A failure of NDI to detect critical defects in safety-related components of nuclear power plants, for instance, may lead to catastrophic consequences for workers, public and environment. Therefore, ensuring that NDI is reliable and capable of detecting all critical defects is of utmost importance. Despite increased use of automation in NDI, human inspectors, and thus human factors, still play an important role in NDI reliability. Human reliability is the probability of humans conducting specific tasks with satisfactory performance. Many techniques are suitable for modeling and analyzing human reliability in NDI of nuclear power plant components, such as FMEA (Failure Modes and Effects Analysis) and THERP (Technique for Human Error Rate Prediction). An example by using qualitative and quantitative assessesments with these two techniques to improve typical NDI of pipe segments of a core cooling system of a nuclear power plant, through acting on human factors issues, is presented.


Author(s):  
Thomas A. Ulrich ◽  
Roger Lew ◽  
Ronald L. Boring ◽  
Torrey Mortenson ◽  
Jooyoung Park ◽  
...  

Nuclear power plants are looking towards integrated energy systems to address the challenges faced by increasing competition from renewable energy and cheap natural gas in wholesale electricity markets. Electricity-hydrogen hybrid operations is one potential technology being explored. As part of this investigation a human factors team was integrated into the overall engineering project to develop a human system interface (HSI) for a novel system to extract steam for a coupled hydrogen production process. This paper presents the process used to perform the nuclear specific human factors engineering required to develop the HSI for this novel and unprecedented system. Furthermore, the early integration of the human factors team and the meaningful improvements to the engineering of the system itself in addition to the successful development of the HSI for this particular application are described. Lastly, the HSI developed is presented to demonstrate the culmination of the process and disseminate a potential HSI design for electricity-hydrogen hybrid operations that may be useful for others exploring similar integrated energy systems concepts.


Author(s):  
Jean-Jacques Grenouillet

Nowadays, decommissioning of nuclear power plants has become a key issue for nuclear industry in Europe. The phasing out of nuclear energy in Germany, Belgium and Sweden, as well as the early closure of nuclear units in applicant countries in the frame of EU enlargement, has largely contributed to consider decommissioning as the next challenge to face. The situation is slightly different in France where nuclear energy is still considered as a safe, cost-effective and environment friendly energy source. Electricite´ de France (EDF) is working on the development of a new generation of reactor to replace the existing one and erection of a new nuclear power plant could start in the next few years. Nevertheless, to achieve this objective, it will be necessary to get the support of political decision-makers and the acceptance of public opinion. Due to the growing concern of these stakeholders for environmental issues, their support can only be obtained if it is possible to demonstrate that nuclear energy industry will not leave behind unsolved issues that will be a burden to the next generations. In this context decommissioning of the first generation of EDF NPPs constitutes a prerequisite for the erection of a new type of nuclear power plant. This paper will present the programme defined by EDF for the decommissioning of its nine already shutdown reactors (Fig. 1). The reasons of the recent evolution of EDF decommissioning strategy will be explained and the key issues that will contribute to the successful implementation of this programme will be addressed. Finally, what has been achieved on sites so far and major planned activities will be described.


Author(s):  
Kenji Mashio ◽  
Kodo Ito

Integrated process of human error management in human factors engineering (HFE) process provides a systematic direction for the design countermeasures development to prevent potential human errors. The process analyzes performance influence factors (PIFs) for crew failure modes (CFMs) and human failure events (HFEvs) in human reliability analysis (HRA). This paper provides applications of the process to the event evaluation for nuclear power plant design, especially PWR. In this application, the HRA/HFE integrated process had specified further detail for PIF attributes which had not been obtained in HRA, and showed further investigations to treat how operators induced their human errors through their cognitive task process in their work environment. This application showed effectiveness of the process in order to provide design countermeasures for preventing potential human errors occurrence based on the extensive PIFs and their error forcing context in HRA.


Author(s):  
Garry G. Young ◽  
Mark A. Rinckel

License renewal of operating nuclear power plants in the United States has become one of the most successful nuclear industry activities in the past few years. It is anticipated that over 90% of the 103 operating nuclear power plants in the United States will pursue license renewal and seek an additional 20 years of operation. Some plants may pursue operation to 80 years or longer since the license renewal rule does not limit the operating life of a nuclear power plant. The requirements for renewing the operating license of a nuclear reactor in the United States are contained in Nuclear Regulatory Commission (NRC) Regulation 10 CFR Part 54, which addresses general, technical, technical specification, and environmental requirements. The most labor intensive element of the requirements are the technical requirements, which include addressing an integrated plant assessment (IPA) and time limited aging analyses (TLAA). The cost of performing the needed reviews and obtaining a renewed license ranges between $10M to $15M. The license renewal rule focuses on aging of passive long-lived components and aging management programs that manage those structures and components. The aging management programs credited to manage aging include both existing programs (e.g., ASME Section XI) and a few new programs (e.g., Reactor Vessel Internals Aging Management Program). Commitments to aging management programs for license renewal may be implemented and tracked through a comprehensive plant life management (PLIM) program. PLIM is the process to integrated equipment aging management with other plant activities to maximize plant value. PLIM can save the operating plant a significant amount of money by effectively planning and implementing component refurbishment and replacement. The ultimate decision to seek license renewal and continue operation is based on PLIM, which considers aging, safety, and economics.


Sign in / Sign up

Export Citation Format

Share Document