Neural-Network-Based System for Novel Fault Detection in Rotating Machinery

2004 ◽  
Vol 10 (8) ◽  
pp. 1137-1150 ◽  
Author(s):  
V. Crupi ◽  
E. Guglielmino ◽  
G. Milazzo

The purpose of this research is the realization of a method for machine health monitoring. The rotating machinery of the Refinery of Milazzo (Italy) was analyzed. A new procedure, incorporating neural networks, was designed and realized to evaluate the vibration signatures and recognize the fault presence. Neural networks have replaced the traditional expert systems, used in the past for the fault diagnosis, because they are a dynamic system and thus adaptable to continuously variable data. The disadvantage of common neural networks is that they need to be trained by real examples of different fault typologies. The innovative aspect of the new procedure is that it allows us to diagnose faults, which are not considered in the training set. This ability was demonstrated by our analysis; the net was able to detect the presence of imbalance and bearing wear, even if these typologies of faults were not present in the training data set.

2020 ◽  
Vol 12 (1) ◽  
pp. 8
Author(s):  
Mohammed Alabsi ◽  
Ahmad Saeed Mohammad ◽  
Ahmed Sammoud

In recent years, Deep Learning (DL) and Internet of Things (IoT) technologies have been used and deployed jointly to solve a wide range of modern technical challenges in different areas. With the continuous advancement of IoT connectivity solutions, the range of applications that can benefit from such an increase is limitless. One area that can benefit significantly from the combined strength of DL and IoT technologies is Machine Health Monitoring (MHM) Systems. MHM utilizes different analytical approaches and tools to determine the state and health of different components in running machinery. The traditional MHM system uses control limits from predetermining values that determine if a component has failed depending on the preset limits of the machinery. The main disadvantage of using such technique us the unpredictable nature of the timing and component failure. This type of failure causes unplanned production time loss and increases the cost of maintenance due to the unpredictability of the failure events. With DL and low-cost sensors that use different IoT connectivity solutions, MHM systems can utilize the learning capabilities of the DL network to perform end-to-end prognosis. One crucial fact is that features learned by Deep Neural Networks (DNN) are part of a large black box, and there are valuable underlying physical meanings embedded within the features. Hence, there is an exciting research area to explore underlying mechanisms and interpret physical meanings within DNN. In this paper, DNN learning mechanisms are evaluated using three different models: stacked autoencoders (SAE), denoising autoencoders (DAE), and convolutional neural networks (CNN). Initial results indicate that the input layer behaves similarly to a band-pass filter.  However, deep layers require optimal input design to maximize neuron activation, which leads to an extensive understanding of deep layer learning consequently (In progress).


Time series is a very common class of data sets. Among others, it is very simple to obtain time series data from a variety of various science and finance applications and an anomaly detection technique for time series is becoming a very prominent research topic nowadays. Anomaly identification covers intrusion detection, detection of theft, mistake detection, machine health monitoring, network sensor event detection or habitat disturbance. It is also used for removing suspicious data from the data set before production. This review aims to provide a detailed and organized overview of the Anomaly detection investigation. In this article we will first define what an anomaly in time series is, and then describe quickly some of the methods suggested in the past two or three years for detection of anomaly in time series


2021 ◽  
Vol 70 ◽  
pp. 1-11
Author(s):  
Bingchang Hou ◽  
Dong Wang ◽  
Yi Wang ◽  
Tongtong Yan ◽  
Zhike Peng ◽  
...  

Sensors ◽  
2020 ◽  
Vol 21 (1) ◽  
pp. 11
Author(s):  
Domonkos Haffner ◽  
Ferenc Izsák

The localization of multiple scattering objects is performed while using scattered waves. An up-to-date approach: neural networks are used to estimate the corresponding locations. In the scattering phenomenon under investigation, we assume known incident plane waves, fully reflecting balls with known diameters and measurement data of the scattered wave on one fixed segment. The training data are constructed while using the simulation package μ-diff in Matlab. The structure of the neural networks, which are widely used for similar purposes, is further developed. A complex locally connected layer is the main compound of the proposed setup. With this and an appropriate preprocessing of the training data set, the number of parameters can be kept at a relatively low level. As a result, using a relatively large training data set, the unknown locations of the objects can be estimated effectively.


Author(s):  
Carlos Lassance ◽  
Vincent Gripon ◽  
Antonio Ortega

For the past few years, deep learning (DL) robustness (i.e. the ability to maintain the same decision when inputs are subject to perturbations) has become a question of paramount importance, in particular in settings where misclassification can have dramatic consequences. To address this question, authors have proposed different approaches, such as adding regularizers or training using noisy examples. In this paper we introduce a regularizer based on the Laplacian of similarity graphs obtained from the representation of training data at each layer of the DL architecture. This regularizer penalizes large changes (across consecutive layers in the architecture) in the distance between examples of different classes, and as such enforces smooth variations of the class boundaries. We provide theoretical justification for this regularizer and demonstrate its effectiveness to improve robustness on classical supervised learning vision datasets for various types of perturbations. We also show it can be combined with existing methods to increase overall robustness.


2021 ◽  
Vol 11 (15) ◽  
pp. 6723
Author(s):  
Ariana Raluca Hategan ◽  
Romulus Puscas ◽  
Gabriela Cristea ◽  
Adriana Dehelean ◽  
Francois Guyon ◽  
...  

The present work aims to test the potential of the application of Artificial Neural Networks (ANNs) for food authentication. For this purpose, honey was chosen as the working matrix. The samples were originated from two countries: Romania (50) and France (53), having as floral origins: acacia, linden, honeydew, colza, galium verum, coriander, sunflower, thyme, raspberry, lavender and chestnut. The ANNs were built on the isotope and elemental content of the investigated honey samples. This approach conducted to the development of a prediction model for geographical recognition with an accuracy of 96%. Alongside this work, distinct models were developed and tested, with the aim of identifying the most suitable configurations for this application. In this regard, improvements have been continuously performed; the most important of them consisted in overcoming the unwanted phenomenon of over-fitting, observed for the training data set. This was achieved by identifying appropriate values for the number of iterations over the training data and for the size and number of the hidden layers and by introducing of a dropout layer in the configuration of the neural structure. As a conclusion, ANNs can be successfully applied in food authenticity control, but with a degree of caution with respect to the “over optimization” of the correct classification percentage for the training sample set, which can lead to an over-fitted model.


Author(s):  
Panchaksharayya S. Hiremath ◽  
Kalyan Ram B. ◽  
Santoshgouda M. Patil ◽  
V. Sabarish ◽  
Preeti Biradar ◽  
...  

Sign in / Sign up

Export Citation Format

Share Document