Anti-disturbance trajectory tracking of quadrotor vehicles via generalized extended state observer

2019 ◽  
Vol 26 (13-14) ◽  
pp. 1173-1186 ◽  
Author(s):  
Di Shi ◽  
Zhong Wu ◽  
Wusheng Chou

During the trajectory tracking process and low altitude flight of quadrotor, wind gust and ground effect will significantly affect the accuracy and stability of the controller. Therefore, it is vital for a quadrotor to have a robust controller against multiple disturbances. To mitigate this challenge, an active anti-disturbance control strategy based on generalized extended state observer is proposed in this article. Firstly, quadrotor dynamics is modeled as cascaded translational and rotational loops, and the characteristics of wind gust and ground effect are analyzed. Secondly, two generalized extended state observers are constructed for those loops respectively to estimate and attenuate the impact of wind gust and ground effect, and the position and attitude controller are designed based on backstepping method. Finally, real time experiments are carried out on hovering and circle trajectory tracking conditions. The results illustrate that the proposed controller has more advantages in high precision trajectory tracking and low altitude flight of quadrotor in existence of multiple disturbances.

Electronics ◽  
2018 ◽  
Vol 7 (8) ◽  
pp. 128 ◽  
Author(s):  
Di Shi ◽  
Zhong Wu ◽  
Wusheng Chou

This article addresses the problem of high precision attitude control for quadrotor unmanned aerial vehicle in presence of wind gust and actuator faults. We consider the effect of those factors as lumped disturbances, and in order to realize the quickly and accurately estimation of the disturbances, we propose a control strategy based on the online disturbance uncertainty estimation and attenuation method. Firstly, an enhanced extended state observer (ESO) is constructed based on the super-twisting (ST) algorithm to estimate and attenuate the impact of wind gust and actuator faults in finite time. And the convergence analysis and parameter selection rule of STESO are given following. Secondly, in order to guarantee the asymptotic convergence of desired attitude timely, a sliding mode control law is derived based on the super-twisting algorithm. And a comprehensive stability analysis for the entire system is presented based on the Lyapunov stability theory. Finally, to demonstrate the efficiency of the proposed solution, numerical simulations and real time experiments are carried out in presences of wind disturbance and actuator faults.


Author(s):  
Dingxin He ◽  
Haoping Wang ◽  
Yang Tian ◽  
Konstantin Zimenko

In this article, an event-triggered discrete extended state observer–based model-free controller is developed for the position and attitude trajectory tracking of a quadrotor with uncertainties and external disturbances. The referred event-triggered discrete extended state observer–based model-free controller is composed of two event-triggered mechanisms, ultra-local model-based discrete extended state observer and proportional-derivative sub-controller. To reduce system output signal transmission, the event-triggered mechanism of output signal which owns dynamic and static threshold is designed. Based on event-triggered output signals, the discrete extended state observer is constructed to obtain the estimations of state values which are utilized as controller’s variables and to compensate for the lumped disturbances. The proportional-derivative sub-controller is adopted to guarantee the convergence of trajectory tracking error. To decrease control input signal transmission, the event-triggered mechanism of input signal that processes static threshold is constructed. Moreover, the stability analysis of overall quadrotor system with the proposed control strategy is investigated using Lyapunov theorem and the Zeno behavior is avoided. Finally, corresponding control scheme for quadrotor system is structured and the numerical comparative simulation and co-simulation experiment are given to demonstrate the effectiveness and performance of the proposed approach.


2020 ◽  
Vol 10 (11) ◽  
pp. 3719
Author(s):  
Ran Jiao ◽  
Wusheng Chou ◽  
Yongfeng Rong ◽  
Mingjie Dong

Aerial operation with unmanned aerial vehicle (UAV) manipulator is a promising field for future applications. However, the quadrotor UAV manipulator usually suffers from several disturbances, such as external wind and model uncertainties, when conducting aerial tasks, which will seriously influence the stability of the whole system. In this paper, we address the problem of high-precision attitude control for quadrotor manipulator which is equipped with a 2-degree-of-freedom (DOF) robotic arm under disturbances. We propose a new sliding-mode extended state observer (SMESO) to estimate the lumped disturbance and build a backstepping attitude controller to attenuate its influence. First, we use the saturation function to replace discontinuous sign function of traditional SMESO to alleviate the estimation chattering problem. Second, by innovatively introducing super-twisting algorithm and fuzzy logic rules used for adaptively updating the observer switching gains, the fuzzy adaptive saturation super-twisting extended state observer (FASTESO) is constructed. Finally, in order to further reduce the impact of sensor noise, we invite a tracking differentiator (TD) incorporated into FASTESO. The proposed control approach is validated with effectiveness in several simulations and experiments in which we try to fly UAV under varied external disturbances.


Author(s):  
Wenming Nie ◽  
Huifeng Li ◽  
Ran Zhang ◽  
Bo Liu

The ascent trajectory tracking problem of a launch vehicle is investigated in this paper. To improve the conventional trajectory linearization method which usually omits the linearization errors, the extended state observer (ESO) is employed in this paper to timely estimate the total disturbance which consists of the external disturbances and the modeling uncertainties resulting from linearization error. It is proven that the proposed trajectory tracking controller can guarantee the desired performance despite both external disturbances and the modeling uncertainties. Moreover, compared with the conventional linearization control method, the proposed controller is shown to have much better performance of uncertainty rejection. Finally, the feasibility and performance of this controller are illuminated via simulation studies.


Sign in / Sign up

Export Citation Format

Share Document