Stresses in equilibrium configurations of inextensible nets with slack

2015 ◽  
Vol 22 (4) ◽  
pp. 649-665 ◽  
Author(s):  
Miroslav Šilhavý

The paper deals with nets formed by two families of fibers (cords) which can grow shorter but not longer, in a deformation. The nets are treated as two-dimensional continua in the three-dimensional space. The inextensibility condition places unilateral constraint on the partial derivatives y,1 and y,2 of the deformation [Formula: see text] of the form [Formula: see text] [Formula: see text] There is no deformation energy, the total energy reduces to the potential energy of the net under external forces. Equilibrium configurations are those of minimum energy. The stresses in equilibrium configurations thus reduce to the reactions to the constraints. Nonzero stresses occur only in tense regions where one or two constraints are satisfied with the equality sign. The paper follows the work of Paroni in treating the stress problem via the dual variational problem in the sense of convex analysis. Unlike in the work of Paroni, where stresses are modeled as finitely additive set functions, here a (perhaps more economic) choice of spaces is made that leads to more accessible stresses represented by (countably additive) measures. The present development is made possible by an observation, of independent value, that the space of measures with divergence measure is the dual of another Banach space, in the present context naturally interpreted as the space of strains. Our measures generalize stress fields represented by ordinary functions to account for stress concentrations along folded lines in tension, frequently occurring in equilibrium configurations of the net.

Author(s):  
Alessandro Massaro

After a brief introduction of piezoelectric materials, this chapter focuses on the characterization of vibrating freestanding piezoelectric AlN devices forced by different external forces acting simultaneously. The analyzed vibrating forces are applied mainly to piezoelectric freestanding structures stimulated by irregular vibration phenomena. Particular kinds of theoretical noise signals are commented. The goal of the chapter is to analyze the effect of the noise in order to model the chaotic vibrating system and to predict the output current signals. Moreover, the author also shows a possible alternative way to detect different vibrating force directions in the three dimensional space by means of curved piezoelectric layouts.


2013 ◽  
Vol 6 (1) ◽  
Author(s):  
Adam H. Hesselroth ◽  
Michael P. Hennessey

The 6 × 6 stiffness matrix for a single Stewart platform tensile truss is well known. This work extends the methodology used to determine the stiffness matrix of a double Stewart platform system, in which one Stewart platform is stacked on top of another, in serial fashion. A double Stewart platform may offer advantages for some applications in terms of increased stiffness in certain directions. Using principles of statics and considering small displacement perturbations in three-dimensional space of both mobile platforms (middle and bottom) from their weighted equilibrium locations, displacements can be related in a linear manner to application loading, implying a stiffness matrix. Scripts are then developed and executed in matlabtm to determine the stiffness matrix of a specific system. The matlabtm result is validated using single and double Stewart platform physical models and measuring system compliance responses to external forces and moments.


Author(s):  
Paul Sutcliffe

The Skyrme–Faddeev model is a modified sigma model in three-dimensional space, which has string-like topological solitons classified by the integer-valued Hopf charge. Numerical simulations are performed to compute soliton solutions for Hopf charges up to 16, with initial conditions provided by families of rational maps from the three-sphere into the complex projective line. A large number of new solutions are presented, including a variety of torus knots for a range of Hopf charges. Often these knots are only local energy minima, with the global minimum being a linked solution, but for some values of the Hopf charge they are good candidates for the global minimum energy solution. The computed energies are in agreement with Ward's conjectured energy bound.


2015 ◽  
Vol 12 (113) ◽  
pp. 20150795 ◽  
Author(s):  
Patrice Koehl ◽  
Joel Hass

In this paper, we propose a new approach for computing a distance between two shapes embedded in three-dimensional space. We take as input a pair of triangulated genus zero surfaces that are topologically equivalent to spheres with no holes or handles, and construct a discrete conformal map f between the surfaces. The conformal map is chosen to minimize a symmetric deformation energy E sd ( f ) which we introduce. This measures the distance of f from an isometry, i.e. a non-distorting correspondence. We show that the energy of the minimizing map gives a well-behaved metric on the space of genus zero surfaces. In contrast to most methods in this field, our approach does not rely on any assignment of landmarks on the two surfaces. We illustrate applications of our approach to geometric morphometrics using three datasets representing the bones and teeth of primates. Experiments on these datasets show that our approach performs remarkably well both in shape recognition and in identifying evolutionary patterns, with success rates similar to, and in some cases better than, those obtained by expert observers.


Author(s):  
A. Semos ◽  
C. Chassapis

Abstract In this paper finite element procedures are presented for analyzing the elastic-dynamic behavior of mechanical components fabricated from fiber-reinforced composite materials. An arbitrarily laminated composite plate element is created which allows the analysis of components that are moving in three dimensional space. The five D.O.F. per node static model of S. C. Panda and R. Natarajan is used as a basis for the derivation of the dynamic model. The elemental equations of motion are derived from Hamilton’s Principle. The formulation considers the total kinetic and strain energies of the moving element, together with the work due to bending, caused by the transversely acting external forces, as well as that due to the foreshortening of the element, caused by axially applied loads.


Author(s):  
David A. Agard ◽  
Yasushi Hiraoka ◽  
John W. Sedat

In an effort to understand the complex relationship between structure and biological function within the nucleus, we have embarked on a program to examine the three-dimensional structure and organization of Drosophila melanogaster embryonic chromosomes. Our overall goal is to determine how DNA and proteins are organized into complex and highly dynamic structures (chromosomes) and how these chromosomes are arranged in three dimensional space within the cell nucleus. Futher, we hope to be able to correlate structual data with such fundamental biological properties as stage in the mitotic cell cycle, developmental state and transcription at specific gene loci.Towards this end, we have been developing methodologies for the three-dimensional analysis of non-crystalline biological specimens using optical and electron microscopy. We feel that the combination of these two complementary techniques allows an unprecedented look at the structural organization of cellular components ranging in size from 100A to 100 microns.


Author(s):  
K. Urban ◽  
Z. Zhang ◽  
M. Wollgarten ◽  
D. Gratias

Recently dislocations have been observed by electron microscopy in the icosahedral quasicrystalline (IQ) phase of Al65Cu20Fe15. These dislocations exhibit diffraction contrast similar to that known for dislocations in conventional crystals. The contrast becomes extinct for certain diffraction vectors g. In the following the basis of electron diffraction contrast of dislocations in the IQ phase is described. Taking account of the six-dimensional nature of the Burgers vector a “strong” and a “weak” extinction condition are found.Dislocations in quasicrystals canot be described on the basis of simple shear or insertion of a lattice plane only. In order to achieve a complete characterization of these dislocations it is advantageous to make use of the one to one correspondence of the lattice geometry in our three-dimensional space (R3) and that in the six-dimensional reference space (R6) where full periodicity is recovered . Therefore the contrast extinction condition has to be written as gpbp + gobo = 0 (1). The diffraction vector g and the Burgers vector b decompose into two vectors gp, bp and go, bo in, respectively, the physical and the orthogonal three-dimensional sub-spaces of R6.


2004 ◽  
Vol 71 ◽  
pp. 1-14
Author(s):  
David Leys ◽  
Jaswir Basran ◽  
François Talfournier ◽  
Kamaldeep K. Chohan ◽  
Andrew W. Munro ◽  
...  

TMADH (trimethylamine dehydrogenase) is a complex iron-sulphur flavoprotein that forms a soluble electron-transfer complex with ETF (electron-transferring flavoprotein). The mechanism of electron transfer between TMADH and ETF has been studied using stopped-flow kinetic and mutagenesis methods, and more recently by X-ray crystallography. Potentiometric methods have also been used to identify key residues involved in the stabilization of the flavin radical semiquinone species in ETF. These studies have demonstrated a key role for 'conformational sampling' in the electron-transfer complex, facilitated by two-site contact of ETF with TMADH. Exploration of three-dimensional space in the complex allows the FAD of ETF to find conformations compatible with enhanced electronic coupling with the 4Fe-4S centre of TMADH. This mechanism of electron transfer provides for a more robust and accessible design principle for interprotein electron transfer compared with simpler models that invoke the collision of redox partners followed by electron transfer. The structure of the TMADH-ETF complex confirms the role of key residues in electron transfer and molecular assembly, originally suggested from detailed kinetic studies in wild-type and mutant complexes, and from molecular modelling.


Author(s):  
Leiba Rodman

Quaternions are a number system that has become increasingly useful for representing the rotations of objects in three-dimensional space and has important applications in theoretical and applied mathematics, physics, computer science, and engineering. This is the first book to provide a systematic, accessible, and self-contained exposition of quaternion linear algebra. It features previously unpublished research results with complete proofs and many open problems at various levels, as well as more than 200 exercises to facilitate use by students and instructors. Applications presented in the book include numerical ranges, invariant semidefinite subspaces, differential equations with symmetries, and matrix equations. Designed for researchers and students across a variety of disciplines, the book can be read by anyone with a background in linear algebra, rudimentary complex analysis, and some multivariable calculus. Instructors will find it useful as a complementary text for undergraduate linear algebra courses or as a basis for a graduate course in linear algebra. The open problems can serve as research projects for undergraduates, topics for graduate students, or problems to be tackled by professional research mathematicians. The book is also an invaluable reference tool for researchers in fields where techniques based on quaternion analysis are used.


Sign in / Sign up

Export Citation Format

Share Document