A High-Throughput Turbidometric Assay for Screening Inhibitors of Protein Disulfide Isomerase Activity

2004 ◽  
Vol 9 (7) ◽  
pp. 614-620 ◽  
Author(s):  
Anthony M. Smith ◽  
John Chan ◽  
Donna Oksenberg ◽  
Roman Urfer ◽  
David S. Wexler ◽  
...  

Protein disulfide isomerase (PDI) plays a key role in protein folding by catalyzing rearrangements of disulfide bonds in substrate proteins following their synthesis in eukaryotic cells. Besides its major role in the processing and maturation of secretory proteins in the endoplasmic reticulum, this enzyme and its homologs have been implicated in multiple important cellular processes; however, they have not served as targets for the development of therapeutic agents. The authors developed a high-throughput screening assay for PDI and its homologous enzymes in 384-well microplates. The method is based on the enzyme-catalyzed reduction of insulin in the presence of dithiothreitol and measures the aggregation of reduced insulin chains at 650 nm. This kinetic assay was converted to an end-point assay by using hydrogen peroxide as a stop reagent. The feasibility of this high-throughput assay for screening chemical libraries was demonstrated in a pilot screen. The authors show that this homogenous turbidometric assay is robust and cost-effective and can be applied to identify PDI inhibitors from chemical libraries, opening this class of enzymes for therapeutic exploration.

2003 ◽  
Vol 8 (2) ◽  
pp. 198-204 ◽  
Author(s):  
Rommel Mallari ◽  
Elissa Swearingen ◽  
Wei Liu ◽  
Arnold Ow ◽  
Stephen W. Young ◽  
...  

A generic high-throughput screening assay based on the scintillation proximity assay technology has been developed for protein kinases. In this assay, the biotinylated 33P-peptide product is captured onto polylysine Ysi bead via avidin. The scintillation signal measuring the product formation increases linearly with avidin concentration due to effective capture of the product on the bead surface via strong coulombic interactions. This novel assay has been optimized and validated in 384-well microplates. In a pilot screen, a signal-to-noise ratio of 5-to 9-fold and a Z′ factor ranging from 0.6 to 0.8 were observed, demonstrating the suitability of this assay for high-throughput screening of random chemical libraries for kinase inhibitors. ( Journal of Biomolecular Screening 2003:198-204)


2017 ◽  
Vol 22 (6) ◽  
pp. 767-774
Author(s):  
Anuradha Roy ◽  
Mohammad A. Mir

Humans acquire hantavirus infection by the inhalation of aerosolized excreta of infected rodent hosts. There is no treatment for hantavirus diseases at present. Therapeutic intervention during early stages of viral infection can improve the outcome of this zoonotic viral illness. The interaction between an evolutionary conserved sequence at the 5′ terminus of hantaviral genomic RNA and hantavirus nucleocapsid protein plays a critical role in the hantavirus replication cycle. This unique interaction is a novel target for therapeutic intervention of hantavirus disease. We developed a very sensitive, tractable, and cost-effective fluorescence-based assay to monitor the interaction between the nucleocapsid protein and the target RNA sequence. The assay was optimized for high-throughput screening of chemical libraries to identify molecules that interrupt this RNA–protein interaction. The assay was validated using a library of 6880 chemical compounds. This validation screen demonstrated the reproducibility and validity of required statistical criteria for high-throughput screening. The assay is ready to use for high-throughput screening of large chemical libraries to identify antihantaviral therapeutic molecules and can be amenable to similar targets in other viruses.


2018 ◽  
Vol 20 (9) ◽  
pp. 804-819 ◽  
Author(s):  
Mohamed Boudjelal ◽  
Ana Maria Ruiz-Avendano ◽  
Gonzalo Colmenarejo ◽  
Sergio A. Senar-Sancho ◽  
Ashley Barnes ◽  
...  

2021 ◽  
Vol 21 (1) ◽  
Author(s):  
Sadaf Kalsum ◽  
Blanka Andersson ◽  
Jyotirmoy Das ◽  
Thomas Schön ◽  
Maria Lerm

Abstract Background Efficient high-throughput drug screening assays are necessary to enable the discovery of new anti-mycobacterial drugs. The purpose of our work was to develop and validate an assay based on live-cell imaging which can monitor the growth of two distinct phenotypes of Mycobacterium tuberculosis and to test their susceptibility to commonly used TB drugs. Results Both planktonic and cording phenotypes were successfully monitored as fluorescent objects using the live-cell imaging system IncuCyte S3, allowing collection of data describing distinct characteristics of aggregate size and growth. The quantification of changes in total area of aggregates was used to define IC50 and MIC values of selected TB drugs which revealed that the cording phenotype grew more rapidly and displayed a higher susceptibility to rifampicin. In checkerboard approach, testing pair-wise combinations of sub-inhibitory concentrations of drugs, rifampicin, linezolid and pretomanid demonstrated superior growth inhibition of cording phenotype. Conclusions Our results emphasize the efficiency of using automated live-cell imaging and its potential in high-throughput whole-cell screening to evaluate existing and search for novel antimycobacterial drugs.


2021 ◽  
pp. 247255522110006
Author(s):  
Lesley-Anne Pearson ◽  
Charlotte J. Green ◽  
De Lin ◽  
Alain-Pierre Petit ◽  
David W. Gray ◽  
...  

Severe acute respiratory syndrome coronavirus-2 (SARS-CoV-2) represents a significant threat to human health. Despite its similarity to related coronaviruses, there are currently no specific treatments for COVID-19 infection, and therefore there is an urgent need to develop therapies for this and future coronavirus outbreaks. Formation of the cap at the 5′ end of viral RNA has been shown to help coronaviruses evade host defenses. Nonstructural protein 14 (nsp14) is responsible for N7-methylation of the cap guanosine in coronaviruses. This enzyme is highly conserved among coronaviruses and is a bifunctional protein with both N7-methyltransferase and 3′-5′ exonuclease activities that distinguish nsp14 from its human equivalent. Mutational analysis of SARS-CoV nsp14 highlighted its role in viral replication and translation efficiency of the viral genome. In this paper, we describe the characterization and development of a high-throughput assay for nsp14 utilizing RapidFire technology. The assay has been used to screen a library of 1771 Food and Drug Administration (FDA)-approved drugs. From this, we have validated nitazoxanide as a selective inhibitor of the methyltransferase activity of nsp14. Although modestly active, this compound could serve as a starting point for further optimization.


Antibiotics ◽  
2020 ◽  
Vol 9 (11) ◽  
pp. 808
Author(s):  
Maurice Steenhuis ◽  
Corinne M. ten Hagen-Jongman ◽  
Peter van Ulsen ◽  
Joen Luirink

The structural integrity of the Gram-negative cell envelope is guarded by several stress responses, such as the σE, Cpx and Rcs systems. Here, we report on assays that monitor these responses in E. coli upon addition of antibacterial compounds. Interestingly, compromised peptidoglycan synthesis, outer membrane biogenesis and LPS integrity predominantly activated the Rcs response, which we developed into a robust HTS (high-throughput screening) assay that is suited for phenotypic compound screening. Furthermore, by interrogating all three cell envelope stress reporters, and a reporter for the cytosolic heat-shock response as control, we found that inhibitors of specific envelope targets induce stress reporter profiles that are distinct in quality, amplitude and kinetics. Finally, we show that by using a host strain with a more permeable outer membrane, large-scaffold antibiotics can also be identified by the reporter assays. Together, the data suggest that stress profiling is a useful first filter for HTS aimed at inhibitors of cell envelope processes.


PLoS ONE ◽  
2015 ◽  
Vol 10 (6) ◽  
pp. e0129234 ◽  
Author(s):  
Lauren Forbes ◽  
Katherine Ebsworth-Mojica ◽  
Louis DiDone ◽  
Shao-Gang Li ◽  
Joel S. Freundlich ◽  
...  

Sign in / Sign up

Export Citation Format

Share Document