scholarly journals A Cell-Based Ultra-High-Throughput Screening Assay for Identifying Inhibitors of D-Amino Acid Oxidase

2006 ◽  
Vol 11 (5) ◽  
pp. 481-487 ◽  
Author(s):  
Philip E. Brandish ◽  
Chi-Sung Chiu ◽  
Jonathan Schneeweis ◽  
Nicholas J. Brandon ◽  
Clare L. Leech ◽  
...  

Enzymes are often considered less “druggable” targets than ligand-regulated proteins such as G-protein-coupled receptors, ion channels, or other hormone receptors. Reasons for this include cellular location (intracellular vs. cell surface), typically lower affinities for the binding of small molecules compared to ligand-specific receptors, and binding (catalytic) sites that are often charged or highly polar. A practical drawback to the discovery of compounds targeting enzymes is that screening of compound libraries is typically carried out in cell-free activity assays using purified protein in an inherently artificial environment. Cell-based assays, although often arduous to design for enzyme targets, are the preferred discovery tool for the screening of large compound libraries. The authors have recently described a novel cell-based approach to screening for inhibitors of a phosphatase enzyme and now report on the development and implementation of a homogeneous 3456-well plate assay for D-amino acid oxidase (DAO). Human DAO was stably expressed in Chinese hamster ovary (CHO) cells, and its activity was measured as the amount of hydrogen peroxide detected in the growth medium following feeding the cells with D-serine. In less than 12 weeks, the authors proved the concept in 96-and then 384-well formats, miniaturized the assay to the 3456-well (nanoplate) scale, and screened a library containing more than 1 million compounds. They have identified several cell-permeable inhibitors of DAO from this cell-based high-throughput screening, which provided the discovery program with a few novel and attractive lead structures.

2015 ◽  
Vol 20 (10) ◽  
pp. 1218-1231 ◽  
Author(s):  
Ryan T. Terry-Lorenzo ◽  
Keiki Masuda ◽  
Kohtaroh Sugao ◽  
Q. Kevin Fang ◽  
Michael A. Orsini ◽  
...  

Genome-wide association studies have linked polymorphisms in the gene G72 to schizophrenia risk in several human populations. Although controversial, biochemical experiments have suggested that the mechanistic link of G72 to schizophrenia is due to the G72 protein product, pLG72, exerting a regulatory effect on human D-amino acid oxidase (hDAAO) activity. In an effort to identify hDAAO inhibitors of novel mechanism of action, we designed a pLG72-directed hDAAO activity assay suitable for high-throughput screening (HTS). During assay development, we confirmed that pLG72 was an inhibitor of hDAAO. Thus, our assay employed an IC20 pLG72 concentration that was high enough to allow dynamic pLG72-hDAAO complexes to form but with sufficient remaining hDAAO activity to measure during an HTS. After conducting an approximately 150,000-compound HTS, we further characterized a class of compound hits that were less potent hDAAO inhibitors when pLG72 was present. Focusing primarily on compound 2 [2-(2,5-dimethylphenyl)-6-fluorobenzo[d]isothiazol-3(2H)-on], we demonstrated that these compounds inhibited hDAAO via an allosteric, covalent mechanism. Although there is significant interest in the therapeutic potential of compound 2 and its analogues, their sensitivity to reducing agents and their capacity to bind cysteines covalently would need to be addressed during therapeutic drug development.


2012 ◽  
Vol 17 (6) ◽  
pp. 738-751 ◽  
Author(s):  
Janina Preuss ◽  
Michael Hedrick ◽  
Eduard Sergienko ◽  
Anthony Pinkerton ◽  
Arianna Mangravita-Novo ◽  
...  

Plasmodium falciparum causes severe malaria infections in millions of people every year. The parasite is developing resistance to the most common antimalarial drugs, which creates an urgent need for new therapeutics. A promising and attractive target for antimalarial drug design is the bifunctional enzyme glucose-6-phosphate dehydrogenase-6-phosphogluconolactonase (PfGluPho) of P. falciparum, which catalyzes the key step in the parasites’ pentose phosphate pathway. In this study, we describe the development of a high-throughput screening assay to identify small-molecule inhibitors of recombinant PfGluPho. The optimized assay was used to screen three small-molecule compound libraries—namely, LOPAC (Sigma-Aldrich, 1280 compounds), Spectrum (MicroSource Discovery Systems, 1969 compounds), and DIVERSet (ChemBridge, 49 971 compounds). These pilot screens identified 899 compounds that inhibited PfGluPho activity by at least 50%. Selected compounds were further studied to determine IC50 values in an orthogonal assay, the type of inhibition and reversibility, and effects on P. falciparum growth. Screening results and follow-up studies for selected PfGluPho inhibitors are presented. Our high-throughput screening assay may provide the basis to identify novel and urgently needed antimalarial drugs.


2007 ◽  
Vol 13 (1) ◽  
pp. 54-61 ◽  
Author(s):  
Yumei Song ◽  
Ben Buelow ◽  
Anne-Laure Perraud ◽  
Andrew M. Scharenberg

TRPM2 is a member of the transient receptor potential melastatin (TRPM)—related ion channel family. The activation of TRPM2 induced by oxidative/nitrosative stress leads to an increase in intracellular free Ca2+. Although further progress in understanding TRPM2's role in cell and organism physiology would be facilitated by isolation of compounds able to specifically modulate its function in primary cells or animal models, no cell-based assays for TRPM2 function well suited for high-throughput screening have yet been described. Here, a novel suspension B lymphocyte cell line stably expressing TRPM2 was used to develop a cell-based assay. The assay uses the Ca2+-sensitive fluorescence dye, Fluo-4 NW (no wash), to measure TRPM2-dependent Ca2+ transients induced by H2O2 and N-methyl-N′-nitrosoguanidine in a 96-well plate format. Assay performance was evaluated by statistical analysis of the Z′ factor value and was consistently greater than 0.5 under optimal conditions, suggesting that the assay is very robust. For assay validation, the effects of known inhibitors of TRPM2 and TRPM2 gating secondary messenger production were determined. Overall, the authors have developed a cell-based assay that may be used to identify TRPM2 ion channel modulators from large compound libraries. ( Journal of Biomolecular Screening 2008:54-61)


2011 ◽  
Vol 353 (13) ◽  
pp. 2369-2376 ◽  
Author(s):  
Rosario Médici ◽  
Pablo Domínguez de María ◽  
Linda G. Otten ◽  
Adrie J. J. Straathof

1996 ◽  
Vol 76 (06) ◽  
pp. 0993-0997
Author(s):  
Zhao-Yan Li ◽  
Xiao-Wei Wu ◽  
Tie-Fu Yu ◽  
Eric C-Y Lian

SummaryBy means of CM-Sephadex C-25, DEAE-Sephadex A-50, Sephadex G-200, and Sephadex G-75 chromatographies, a lupus anticoagulant like protein (LALP) from Agkistrodon halys brevicaudus was purified. On SDS-PAGE, the purified LALP had a molecular weight of 25,500 daltons under non-reducing condition and 15,000 daltons under reducing condition. The isoelectric point was pH 5.6. Its N terminal amino acid sequencing revealed a mixture of 2 sequences: DCP(P/S)(D/G)WSSYEGH(C/R)Q(Q/K). It was devoid of phospho-lipaseA, fibrino(geno)lytic, 5′-nucleotidase, L-amino acid oxidase, phosphomonoesterase, phosphodiesterase and thrombin-like activities, which were found in crude venom. In the presence of LALP, PT, aPTT, and dRVVT of human plasma were markedly prolonged and its effects were concentration-dependent but time-independent. The inhibitory effect of LALP on the plasma clotting time was enhanced by decreasing phospholipid concentration in TTI test. The individual clotting factor activity was not affected by LALP when higher dilutions of LALP-plasma mixture were used for assay. Russell’s viper venom time was shortened when high phospholipid confirmatory reagent was used. Therefore, the protein has lupus anticoagulant property.


1982 ◽  
Vol 48 (03) ◽  
pp. 277-282 ◽  
Author(s):  
I Nathan ◽  
A Dvilansky ◽  
T Yirmiyahu ◽  
M Aharon ◽  
A Livne

SummaryEchis colorata bites cause impairment of platelet aggregation and hemostatic disorders. The mechanism by which the snake venom inhibits platelet aggregation was studied. Upon fractionation, aggregation impairment activity and L-amino acid oxidase activity were similarly separated from the crude venom, unlike other venom enzymes. Preparations of L-amino acid oxidase from E.colorata and from Crotalus adamanteus replaced effectively the crude E.colorata venom in impairment of platelet aggregation. Furthermore, different treatments known to inhibit L-amino acid oxidase reduced in parallel the oxidase activity and the impairment potency of both the venom and the enzyme preparation. H2O2 mimicked characteristically the impairment effects of L-amino acid oxidase and the venom. Catalase completely abolished the impairment effects of the enzyme and the venom. It is concluded that hydrogen peroxide formed by the venom L-amino acid oxidase plays a role in affecting platelet aggregation and thus could contribute to the extended bleeding typical to persons bitten by E.colorata.


Sign in / Sign up

Export Citation Format

Share Document