scholarly journals Inhibition Profiling of Human Carbonic Anhydrase II by High-Throughput Screening of Structurally Diverse, Biologically Active Compounds

2006 ◽  
Vol 11 (7) ◽  
pp. 782-791 ◽  
Author(s):  
Rema Iyer ◽  
Albert A. Barrese ◽  
Shilpa Parakh ◽  
Christian N. Parker ◽  
Brian C. Tripp

Human carbonic anhydrase II (CA II), a zinc metalloenzyme, was screened against 960 structurally diverse, biologically active small molecules. The assay monitored CA II esterase activity against the substrate 4-nitrophenyl acetate in a format allowing high-throughput screening. The assay proved to be robust and reproducible with a hit rate of ∼2%. Potential hits were further characterized by determining their IC50 and Kd values and tested for nonspecific, promiscuous inhibition. Three known sulfonamide CA inhibitors were identified: acetazolamide, methazolamide, and celecoxib. Other hits were also found, including diuretics and antibiotics not previously identified as CA inhibitors, for example, furosemide and halazone. These results confirm that many sulfonamide drugs have CA inhibitory properties but also that not all sulfonamides are CA inhibitors. Thus many, but not all, sulfonamide drugs appear to interact with CA II and may target other CA isozymes. The screen also yielded several novel classes of nonsulfonamide inhibitors, including merbromin, thioxolone, and tannic acid. Although these compounds may function by some nonspecific mechanism (merbromin and tannic acid), at least 1 (thioxolone) appears to represent a genuine CA inhibitor. Thus, this study yielded a number of potentially new classes of CA inhibitors and preliminary experiments to characterize their mechanism of action.

Author(s):  
Majid Ali ◽  
Syed Majid Bukhari ◽  
Asma Zaidi ◽  
Farhan A. Khan ◽  
Umer Rashid ◽  
...  

Background:: Structurally diverse organic compounds and available drugs were screened against urease and carbonic anhydrase II in a formulation acceptable for high-throughput screening. Objective: The study was conducted to find out potential inhibitors of urease and carbonic anhydrase II. Methods:: Quantification of the possible HITs was carried out by determining their IC50 values. Results and Discussion:: of several screened compounds including derivatives of oxadiazole, coumarins, chromane-2, 4- diones and metal complexes of cysteine-omeprazole showed promising inhibitory activities with IC50 ranging from 47 μM to 412 μM against the urease. The interactions of active compounds with active sites of enzymes were investigated through molecular docking studies which revealed that (R)-1-(4-amino-4-(5-(thiophen-2-yl)-1,3,4-oxadiazol-2-yl) butyl) guanidine possessing IC50 of 47 μM, interacts with one of the nickel metal atom of urease besides further interactions as predictable hydrogen bonds with KCX490, Asp633, His492, His407 and His409 along with Ala440 and 636. Bi-ligand metal complexes of 4-aminoantipyrine based Schiff bases showed activation of urease with AC50 ranging from 68 μM to 112 μM. Almost 21 compounds with varying functional groups including pyrimidines, oxadiazoles, imidazoles, hydrazides and tin based compounds were active carbonic anhydrase II inhibitors presenting 98 μM to 390 μM IC50 values. Several N-substituted sulfonamide derivatives were inactive against carbonic anhydrase II. Conclusion:: Among all the screened compounds, highly active inhibitor of carbonic anhydrase II was (4-(3- hydroxyphenyl)-6-phenyl-2-thioxo-1,2,3,4-tetrahydropyrimidin-5-yl)phenyl) methanone with IC50 of 98.0 μM. This particular compound showed metallic interaction with Zn ion of carbonic anhydrase II through hydroxyl group of phenyl ring.


2011 ◽  
Vol 22 (2) ◽  
pp. 67-74 ◽  
Author(s):  
Malgorzata Sudol ◽  
Jennifer L Fritz ◽  
Melissa Tran ◽  
Gavin P Robertson ◽  
Julie B Ealy ◽  
...  

Background: In addition to activities needed to catalyse integration, retroviral integrases exhibit non-specific endonuclease activity that is enhanced by certain small compounds, suggesting that integrase could be stimulated to damage viral DNA before integration occurs. Methods: A non-radioactive, plate-based, solution phase, fluorescence assay was used to screen a library of 50,080 drug-like chemicals for stimulation of non-specific DNA nicking by HIV-1 integrase. Results: A semi-automated workflow was established and primary hits were readily identified from a graphic output. Overall, 0.6% of the chemicals caused a large increase in fluorescence (the primary hit rate) without also having visible colour that could have artifactually caused this result. None of the potential stimulators from this moderate-size library, however, passed a secondary test that included an inactive integrase mutant that assessed whether the increased fluorescence depended on the endonuclease activity of integrase. Conclusions: This first attempt at identifying integrase stimulator compounds establishes the necessary logistics and workflow required. The results from this study should encourage larger scale high-throughput screening to advance the novel antiviral strategy of stimulating integrase to damage retroviral DNA.


Biomolecules ◽  
2020 ◽  
Vol 10 (4) ◽  
pp. 509 ◽  
Author(s):  
Steffen Glöckner ◽  
Khang Ngo ◽  
Björn Wagner ◽  
Andreas Heine ◽  
Gerhard Klebe

The fluorination of lead-like compounds is a common tool in medicinal chemistry to alter molecular properties in various ways and with different goals. We herein present a detailed study of the binding of fluorinated benzenesulfonamides to human Carbonic Anhydrase II by complementing macromolecular X-ray crystallographic observations with thermodynamic and kinetic data collected with the novel method of kinITC. Our findings comprise so far unknown alternative binding modes in the crystalline state for some of the investigated compounds as well as complex thermodynamic and kinetic structure-activity relationships. They suggest that fluorination of the benzenesulfonamide core is especially advantageous in one position with respect to the kinetic signatures of binding and that a higher degree of fluorination does not necessarily provide for a higher affinity or more favorable kinetic binding profiles. Lastly, we propose a relationship between the kinetics of binding and ligand acidity based on a small set of compounds with similar substitution patterns.


PLoS ONE ◽  
2015 ◽  
Vol 10 (6) ◽  
pp. e0129234 ◽  
Author(s):  
Lauren Forbes ◽  
Katherine Ebsworth-Mojica ◽  
Louis DiDone ◽  
Shao-Gang Li ◽  
Joel S. Freundlich ◽  
...  

RSC Advances ◽  
2015 ◽  
Vol 5 (116) ◽  
pp. 95717-95726 ◽  
Author(s):  
Preeti Gupta ◽  
Shashank Deep

Aggregation pathway of human carbonic anhydrase II in the presence of salt.


Sign in / Sign up

Export Citation Format

Share Document