scholarly journals Characterization of Early Cortical Neural Network Development in Multiwell Microelectrode Array Plates

2016 ◽  
Vol 21 (5) ◽  
pp. 510-519 ◽  
Author(s):  
Ellese Cotterill ◽  
Diana Hall ◽  
Kathleen Wallace ◽  
William R. Mundy ◽  
Stephen J. Eglen ◽  
...  

We examined neural network ontogeny using microelectrode array (MEA) recordings made in multiwell MEA (mwMEA) plates over the first 12 days in vitro (DIV). In primary cortical cultures, action potential spiking activity developed rapidly between DIV 5 and 12. Spiking was sporadic and unorganized at early DIV, and became progressively more organized with time, with bursting parameters, synchrony, and network bursting increasing between DIV 5 and 12. We selected 12 features to describe network activity; principal components analysis using these features demonstrated segregation of data by age at both the well and plate levels. Using random forest classifiers and support vector machines, we demonstrated that four features (coefficient of variation [CV] of within-burst interspike interval, CV of interburst interval, network spike rate, and burst rate) could predict the age of each well recording with >65% accuracy. When restricting the classification to a binary decision, accuracy improved to as high as 95%. Further, we present a novel resampling approach to determine the number of wells needed for comparing different treatments. Overall, these results demonstrate that network development on mwMEA plates is similar to development in single-well MEAs. The increased throughput of mwMEAs will facilitate screening drugs, chemicals, or disease states for effects on neurodevelopment.

2012 ◽  
Vol 86 ◽  
pp. 193-198 ◽  
Author(s):  
Yun Yang ◽  
Qiaochu He ◽  
Xiaolin Hu

Author(s):  
D. Akbari ◽  
M. Moradizadeh ◽  
M. Akbari

<p><strong>Abstract.</strong> This paper describes a new framework for classification of hyperspectral images, based on both spectral and spatial information. The spatial information is obtained by an enhanced Marker-based Hierarchical Segmentation (MHS) algorithm. The hyperspectral data is first fed into the Multi-Layer Perceptron (MLP) neural network classification algorithm. Then, the MHS algorithm is applied in order to increase the accuracy of less-accurately classified land-cover types. In the proposed approach, the markers are extracted from the classification maps obtained by MLP and Support Vector Machines (SVM) classifiers. Experimental results on Washington DC Mall hyperspectral dataset, demonstrate the superiority of proposed approach compared to the MLP and the original MHS algorithms.</p>


2009 ◽  
Author(s):  
◽  
Zhi Li

This research focuses on the design and implementation of an intelligent machine vision and sorting system that can be used to sort objects in an industrial environment. Machine vision systems used for sorting are either geometry driven or are based on the textural components of an object’s image. The vision system proposed in this research is based on the textural analysis of pixel content and uses an artificial neural network to perform the recognition task. The neural network has been chosen over other methods such as fuzzy logic and support vector machines because of its relative simplicity. A Bluetooth communication link facilitates the communication between the main computer housing the intelligent recognition system and the remote robot control computer located in a plant environment. Digital images of the workpiece are first compressed before the feature vectors are extracted using principal component analysis. The compressed data containing the feature vectors is transmitted via the Bluetooth channel to the remote control computer for recognition by the neural network. The network performs the recognition function and transmits a control signal to the robot control computer which guides the robot arm to place the object in an allocated position. The performance of the proposed intelligent vision and sorting system is tested under different conditions and the most attractive aspect of the design is its simplicity. The ability of the system to remain relatively immune to noise, its capacity to generalize and its fault tolerance when faced with missing data made the neural network an attractive option over fuzzy logic and support vector machines.


PLoS ONE ◽  
2017 ◽  
Vol 12 (10) ◽  
pp. e0186147 ◽  
Author(s):  
Benjamin M. Bader ◽  
Anne Steder ◽  
Anders Bue Klein ◽  
Bente Frølund ◽  
Olaf H. U. Schroeder ◽  
...  

2019 ◽  
Vol 9 (1) ◽  
Author(s):  
Tanja Hyvärinen ◽  
Anu Hyysalo ◽  
Fikret Emre Kapucu ◽  
Laura Aarnos ◽  
Andrey Vinogradov ◽  
...  

AbstractHuman pluripotent stem cell (hPSC)-derived neurons provide exciting opportunities for in vitro modeling of neurological diseases and for advancing drug development and neurotoxicological studies. However, generating electrophysiologically mature neuronal networks from hPSCs has been challenging. Here, we report the differentiation of functionally active hPSC-derived cortical networks on defined laminin-521 substrate. We apply microelectrode array (MEA) measurements to assess network events and compare the activity development of hPSC-derived networks to that of widely used rat embryonic cortical cultures. In both of these networks, activity developed through a similar sequence of stages and time frames; however, the hPSC-derived networks showed unique patterns of bursting activity. The hPSC-derived networks developed synchronous activity, which involved glutamatergic and GABAergic inputs, recapitulating the classical cortical activity also observed in rodent counterparts. Principal component analysis (PCA) based on spike rates, network synchronization and burst features revealed the segregation of hPSC-derived and rat network recordings into different clusters, reflecting the species-specific and maturation state differences between the two networks. Overall, hPSC-derived neural cultures produced with a defined protocol generate cortical type network activity, which validates their applicability as a human-specific model for pharmacological studies and modeling network dysfunctions.


2019 ◽  
Vol 99 ◽  
pp. 106595
Author(s):  
Daniel C. Millard ◽  
Heather B. Hayes ◽  
Stacie A. Chvatal ◽  
Anthony M. Nicolini ◽  
Colin A. Arrowood ◽  
...  

2020 ◽  
Vol 2020 ◽  
pp. 1-14
Author(s):  
Yudong Li ◽  
Zhongke Feng ◽  
Shilin Chen ◽  
Ziyu Zhao ◽  
Fengge Wang

The study of forest fire prediction is of great environmental and scientific significance. China’s Guangxi Autonomous Region has a high incidence rate of forest fires. At present, there is little research on forest fires in this area. The application of the artificial neural network and support vector machines (SVM) in forest fire prediction in this area can provide data for forest fire prevention and control in Guangxi. In this paper, based on Guangxi’s 2010–2018 satellite monitoring hotspot data, meteorology, terrain, vegetation, infrastructure, and socioeconomic data, the researchers determined the main forest fire driving factors in Guangxi. They used feature selection and backpropagation neural networks and radial basis SVM to build forest fire prediction models. Finally, the researchers use the accuracy, precision, and area under the characteristic curve (ROC-AUC) and other indicators to evaluate the predictive performance of the two models. The results showed that the prediction accuracy of the BP neural network and SVM is 92.16% and 89.89%, respectively. As both results are over 85%, the requirements of prediction accuracy is met. These results can be used for forest fire prediction in the Guangxi Autonomous Region. Specifically, the accuracy of the BP neural network was 0.93, which was higher than that of the SVM model (0.89); the recall of the SVM model was 0.84, which was lower than the BANN model (0.92), and the AUC value of the SVM model was 0.95, which was lower than the BP neural network model. The obtained results confirm that the BP neural network model can provide more prediction accuracy than support vector machines and is therefore more suitable for forest fire prediction in Guangxi, China. This research provides the necessary theoretical basis and data support for application in the field of forestry of the Guangxi Autonomous Region, China.


Sign in / Sign up

Export Citation Format

Share Document