Wide-field optical coherence tomography imaging in diabetic retinopathy

2021 ◽  
pp. 112067212110549
Author(s):  
Ilkay Kilic Muftuoglu ◽  
Gagan Kalra ◽  
Mohammed Abdul Rasheed ◽  
Carlo Cagini ◽  
Ramkailash Gujar ◽  
...  

Purpose To report the individual retinal layer thicknesses up to mid-equator in patients with diabetic retinopathy (DR) using Spectralis (Heidelberg Engineering, Heidelberg, Germany) wide-field optical coherence tomography (OCT). Methods Retinal layers were segmented using a custom designed semi-automated algorithm, where reference points were marked by the examiner to enable software to automatically compute the thickness values of each retinal sublayer at an interval of 1 mm from reference points. The values of individual retinal thicknesses in eyes with varying severity of DR were compared with the values of healthy subjects. Generalized estimating equation was performed to compensate for inclusion of both eyes of patients. Results A total of 64 patients (119 eyes) with a mean age of 68.97  ±  10.27 years were included. Overall, ganglion cell layer (GCL)/ inner plexiform layer (IPL) complex (-31.67 microns, p < 0.001), outer plexiform layer (-6.78 microns, p = 0.002) and photoreceptor layer (-22.90 microns, p < 0.001) showed significant thinning, while outer nuclear layer thickening ( + 68.19 microns, <0.001) was noted in eyes with DM compared to healthy subjects. Thickness changes were significantly more in the macular segment compared to nasal and temporal segments. GCL/ IPL complex and photoreceptor layers were found to be significantly thin in all grades of DR. Conclusion Retinal thicknesses vary significantly in patients with diabetic retinopathy and understanding patterns of these changes across different segments of the wide field OCT may help better elucidate the natural progression of the disease in terms of retinal anatomy.

2020 ◽  
Vol 10 (1) ◽  
Author(s):  
Shariq Mohammed ◽  
Tingyang Li ◽  
Xing D. Chen ◽  
Elisa Warner ◽  
Anand Shankar ◽  
...  

Abstract Diabetic retinopathy (DR) is a severe retinal disorder that can lead to vision loss, however, its underlying mechanism has not been fully understood. Previous studies have taken advantage of Optical Coherence Tomography (OCT) and shown that the thickness of individual retinal layers are affected in patients with DR. However, most studies analyzed the thickness by calculating summary statistics from retinal thickness maps of the macula region. This study aims to apply a density function-based statistical framework to the thickness data obtained through OCT, and to compare the predictive power of various retinal layers to assess the severity of DR. We used a prototype data set of 107 subjects which are comprised of 38 non-proliferative DR (NPDR), 28 without DR (NoDR), and 41 controls. Based on the thickness profiles, we constructed novel features which capture the variation in the distribution of the pixel-wise retinal layer thicknesses from OCT. We quantified the predictive power of each of the retinal layers to distinguish between all three pairwise comparisons of the severity in DR (NoDR vs NPDR, controls vs NPDR, and controls vs NoDR). When applied to this preliminary DR data set, our density-based method demonstrated better predictive results compared with simple summary statistics. Furthermore, our results indicate considerable differences in retinal layer structuring based on the severity of DR. We found that: (a) the outer plexiform layer is the most discriminative layer for classifying NoDR vs NPDR; (b) the outer plexiform, inner nuclear and ganglion cell layers are the strongest biomarkers for discriminating controls from NPDR; and (c) the inner nuclear layer distinguishes best between controls and NoDR.


2005 ◽  
Vol 15 (5) ◽  
pp. 643-646 ◽  
Author(s):  
T. Hayashi ◽  
K. Kitahara

Purpose The authors previously reported clinical and molecular features of a boy (at age 17) with enhanced S-cone syndrome (ESCS) who had bilateral cystoid maculopathies. The purpose of the current study was to describe the patient's optical coherence tomography (OCT) findings. Methods OCT was performed when the patient was 23 years old. Results OCT images revealed formations of single large hyporeflective cystic spaces in the cystoid maculopathies of both eyes. The cystic spaces were much larger than those of previously reported cases. In the temporal region of each cystic space, symmetric disorganized retinal lamination was observed with the retina lacking well-defined and hypoeflective bands of the inner nuclear layer and the outer nuclear layer, which are seen in normal retina. Splitting in the retinal thickness was at the level of the outer retinal layer rather than at the inner retinal layer in both eyes. Conclusions Splitting is likely to occur close to the outer plexiform layer in which the cleavage plane of familial juvenile retinoschisis is identified. The unique OCT manifestation of symmetric large macular retinoschisis with disorganized retinal lamination may indicate a severe form of ESCS.


2021 ◽  
Vol 8 (1) ◽  
Author(s):  
Jin Li ◽  
Yue Zhou ◽  
Feng Chen ◽  
Yingzi Li ◽  
Rong Zhou ◽  
...  

Abstract Purpose We investigated the effects of retinal ischemia, neurodegeneration, and subclinical edema on best-corrected visual acuity (BCVA) in the early stages of diabetic retinopathy (DR). Methods Ischemia was evaluated by the microvascular parameters measured by optical coherence tomography angiography. Neurodegeneration and subclinical edema were identified by the intraretinal layer thickness obtained by optical coherence tomography. Eyes with nonproliferative diabetic retinopathy (n = 132) from 89 patients were analyzed. Eyes were classified as having normal BCVA (n = 88 [66.7%], Snellen equivalent ≥ 20/20) or decreased BCVA (n = 44 [33.3%], Snellen equivalent < 20/20). The prevalence of ischemia, neurodegeneration, and subclinical edema was explored in patients with and without decreased BCVA, and correlations between BCVA and these pathological pathways were determined. Results Vessel density in the deep retinal capillary plexus (DRCP) and thickness of ganglion cell layer plus inner plexiform layer (GCL-IPL) were significantly lower in eyes with decreased BCVA compared with eyes with normal BCVA (both P < 0.05). In the final multiple regression predictive model, age, DRCP vessel density, and GCL-IPL thickness (all P ≤ 0.044) were predictors of BCVA. DRCP vessel density and GCL-IPL thickness have an interactive effect on visual acuity. The proportions of ischemia and neurodegeneration were significantly higher in eyes with decreased BCVA than in eyes with normal BCVA (P = 0.001 and P = 0.004, respectively). Conclusion During the natural course of the early stages of DR, ischemia and neurodegeneration were the main disease pathways associated with visual acuity, and the mechanisms varied among patients.


2021 ◽  
Author(s):  
ESRA DAG SEKER ◽  
Elif Inci ERBAHCECI TIMUR

Abstract Purpose: The purpose of this study is to investigate anatomic and morphologic features of inner and outer retinal layers in patients recovered from COVID-19 with Spectral Domain Optical Coherence Tomography (SD-OCT), whwther correlate with any symptoms during disease process.Methods: 32 patients recovered from COVID-19; age and gender matched 36 healthy controls were included in this cross-sectional study. Ganglion cell-inner plexiform layer, macular and periapiller retinal nerve fiber layer (RNFL), inner nuclear layer (INL), outer nuclear layer (ONL), outer plexiform layer (OPL) and the outer retinal hyperreflective bands including external limiting membrane (ELM), ellipsoid zone (EZ) and interdigitation zone (IZ) were examined with SD-OCT. The differences of each retinal layers thickness among subgroup analysis of ocular pain and headache were also compared. Results: Macular RNFL of inner and outer nasal and outer inferior quadrants were thinner in COVID-19 patients compared to healthy control group. (p=0.046, p=0.014 and p=0.016, respectively). Thinning in outer superior quadrant of GCIPL and INL quadrants were detected in patients with headache (p=0.026 and p=0.01). Superonasal and inferotemporal sectors of pRNFL were thinner in patients with ocular pain compared to patients without ocular pain (p=0.024 an p=0.015). Integrity of EZ, ELM and IZ were evaluated as continious line and protected on each OCT scans. Conclusion: The study demostrated convincing evidence that SARS-CoV-2 can affect the inner and outer retinal layers, with subclinical localized alterations particularly in patients with headache and ocular pain symptoms during COVID-19 period.


2020 ◽  
Vol 9 (12) ◽  
pp. 3857
Author(s):  
Yumi Lee ◽  
Kyung-Ah Park ◽  
Sei Yeul Oh ◽  
Ju-Hong Min ◽  
Byoung Joon Kim

This study aimed to analyze longitudinal changes in retinal microstructures following acute optic neuritis and to identify the factors that affect those changes using spectral-domain optical coherence tomography (OCT). Forty-eight eyes of 37 patients with a first episode of optic neuritis and 48 eyes of 48 healthy controls were enrolled. Patients underwent serial OCT and visual function testing for more than six months. Individual layers from macular OCT were segmented with an automated algorithm. The total retinal layer (TRL), nerve fiber layer (NFL), ganglion cell layer (GCL) and inner plexiform layer (IPL) of optic neuritis eyes showed significant thinning with time over 6–15 months (p < 0.001 for all). The outer nuclear layer (ONL) showed a later decrease in thickness (p = 0.007). The outer retinal layer (ORL) showed an increase (p = 0.007) in thickness at two to five months which was sustained over time. Low visual acuity and neuromyelitis optica (NMO) immunoglobulin (Ig) G were associated with changes in the thickness of the GCL, IPL, and ONL over time (p < 0.05 for all). Low visual acuity was also associated with changes in the thickness of the NFL over time (p = 0.033). Dynamic changes of retinal microstructures varied according to the retinal layer examined after an optic neuritis attack. Initial visual acuity and NMO-IgG were found to be significant factors affecting the changes in thickness of each retinal layer. These results will lead to a better understanding of the pathologic changes that occur in eyes with optic neuritis.


2017 ◽  
Vol 2017 ◽  
pp. 1-5
Author(s):  
Katsutoshi Goto ◽  
Atsushi Miki ◽  
Tsutomu Yamashita ◽  
Syunsuke Araki ◽  
Go Takizawa ◽  
...  

Objective. To evaluate macular inner retinal layers using swept-source optical coherence tomography (SS-OCT) in patients with homonymous hemianopia due to optic tract syndrome (OTS). Methods. Sixteen eyes of 8 patients with OTS were studied. The macular retinal nerve fiber layer (mRNFL), ganglion cell layer and inner plexiform layer (GCL + IPL), and mRNFL and GCL + IPL (GCC) were measured by SS-OCT (DRI OCT-1 Atlantis®).The scanned area was divided into eight regions and two hemiretinae. Each retinal thickness of the OTS group was compared with that of the 25 control subjects. Results. The GCC thickness in the ipsilateral eyes was significantly reduced in all regions, although predominant thinning of the GCC in the contralateral eyes was found in the nasal region. The GCC + IPL thickness was preferentially reduced at the temporal regions in the ipsilateral eyes and at the nasal regions in the contralateral eyes. The reduction rate of the GCL + IPL thickness was 29.6% at the temporal hemiretina in the ipsilateral eyes and 35.2% at the nasal hemiretina in the contralateral eyes. Conclusion. We found preferential loss of the GCC + IPL thickness corresponding to the hemifield defects in each eye. Quantitative analysis by SS-OCT is capable of detecting the characteristic RGC loss due to OTS.


Author(s):  
Guangying Ma ◽  
Jie Ding ◽  
Tae-Hoon Kim ◽  
Xincheng Yao

A better study of the postnatal retinal development is not only essential for the in-depth understanding of the nature of the vision system but also may provide insights for treatment developments of eye conditions, such as retinopathy of premature (ROP). To date, quantitative analysis of postnatal retinal development is primarily limited to endpoint histological examination. This study is to validate in vivo optical coherence tomography (OCT) for longitudinal monitoring of postnatal retinal development in developing mouse eyes. Three-dimensional (3D) frame registration and super averaging were adopted to investigate the fine structure of the retina. Interestingly, a hyporeflective layer (HRL) between the nerve fiber layer (NFL) and inner plexiform layer (IPL) was observed in developing eyes and gradually disappeared with aging. To interpret the observed retinal layer kinetics, a model based on eyeball expansion, cell apoptosis, and retinal structural modification was proposed.


2020 ◽  
pp. 112067212092766
Author(s):  
Sumit Randhir Singh ◽  
Alessandro Invernizzi ◽  
Mohammed Abdul Rasheed ◽  
Carlo Cagini ◽  
Abhilash Goud ◽  
...  

Purpose To report the individual retinal layer thickness in healthy subjects using wide-field optical coherence tomography. Methods This was a prospective, cross-sectional study involving healthy subjects. A custom-designed semiautomated segmentation algorithm was used to split the retinal layers in seven bands, and individual retinal layer thicknesses were measured in horizontal (nasal, macular, and temporal segments) and vertical meridians (superior, macular, and inferior segments). The variation in retinal thickness was analyzed in different segments at an interval of 1 mm from reference points. Regression analysis was performed to identify the factors affecting retinal thickness. Results Twenty eyes of 20 healthy subjects with mean age of 28.9 ± 6.3 years were analyzed. Overall, nasal and superior segments (mean ± standard deviation: 279.6 ± 17.0 and 234.4 ± 19.2 µm) had maximum and minimum retinal thicknesses, respectively. A total of seven bands were delineated in each optical coherence tomography b scan in each segment. Retinal nerve fiber layer was thickest immediately nasal to optic disk margin in horizontal scan (72.4 ± 32.4 µm) and near the vascular arcades in vertical meridian. Outer plexiform layer, external limiting membrane–ellipsoid zone and interdigitation zone–retinal pigment epithelium–Bruch’s complex showed significant variation in both horizontal and vertical meridians (all p values <0.05). Macular segment in both meridians showed the highest coefficient of variation. Age was the only significant factor affecting retinal thickness in multiple regression analysis (p = 0.001). Conclusions Wide-field optical coherence tomography shows significant regional variation in overall and individual retinal layer thicknesses in macular and peripheral areas in healthy eyes with the highest variation in macular segment.


2021 ◽  
Author(s):  
Zeinab Ghassabi ◽  
Roman Kuranov ◽  
Mengfei Wu ◽  
Behnam Tayebi Tayebi ◽  
Yuanbo Wang ◽  
...  

Purpose: Growing evidence suggests, in glaucoma, the dendritic degeneration of subpopulation of the retinal ganglion cells (RGCs) may precede RGCs soma death. Since different RGCs synapse in different IPL sublayers, visualization of the lamellar structure of the IPL could enable both clinical and fundamental advances in glaucoma understanding and management. In this pilot study, we investigated whether visible-light optical coherence tomography (vis-OCT) could detect the difference in the inner plexiform layer (IPL) sublayers thicknesses between small cohorts of healthy and glaucomatous subjects. Method: We investigated vis-OCT retinal images from nine healthy and five glaucomatous subjects. Four of the healthy subjects were scanned three times each in two separate visits, and five healthy and five glaucoma subjects were scanned three times during a single visit. Raster speckle-reduction scans (3 by 3 by 1.2 mm^3: horizontal; vertical; axial directions with 8192 by 8 by 1024 samplings, respectively) of the superior macular were acquired. IPL sublayers were then manually segmented using averaged A-line profiles. Results: The mean ages of glaucoma and healthy subjects are 59.6 +/- 13.4 and 45.4 +/- 14.4 years (p =0.02, Wilcoxon rank-sum test), respectively. The visual field mean deviation (MD) are -26.4 to -7.7 dB in glaucoma patient and -1.6 to 1.1 dB in healthy subjects (p =0.002). The mean circumpapillary retinal nerve fiber layer (RNFL) thicknesses are 59.6 +/- 9.1 micrometers in glaucoma and 99.2 +/- 16.2 micrometers in healthy subjects (p=0.004). Median coefficients of variation (CVs) of intra-session repeatability for the entire IPL and three sublayers are 3.1%, 5.6%, 6.9%, and 5.6% in healthy subjects and 1.8%, 6.0%, 7.7%, and 6.2% in glaucoma patients, respectively. The mean entire IPL thicknesses are 36.2 +/- 1.5 micrometers in glaucomatous and 40.1 +/- 1.7 micrometers in healthy eyes (p=0.003, Mixed-effects model). We found that the middle sublayer thickness was responsible for the majority of the difference (14.2 +/- 1.8 micrometers in glaucomatous and 17.5 +/- 1.4 micrometers in healthy eyes, p<0.01). Conclusions: IPL sublayer analysis revealed that the middle sublayer could be responsible for the majority of IPL thinning in glaucoma. Vis-OCT quantified IPL sublayers with good repeatability in both glaucoma and healthy subjects. Visualization of the IPL sublayers may enable the investigation of lamella-specific changes in the IPL in glaucoma and may help elucidate the response of different types of RGCs to the disease.


2021 ◽  
pp. 247412642198961
Author(s):  
Ioannis S. Dimopoulos ◽  
Michael Dollin

Purpose: Epiretinal membrane (ERM) is a common retinal finding for patients older than 50 years. Disorganization of the retinal inner layers (DRIL) has emerged as a novel predictor of poor visual acuity (VA) in eyes with inner retinal pathology. The aim of our study is to correlate preoperative DRIL with visual outcomes after ERM surgery. Methods: Medical records and optical coherence tomography (OCT) images of 81 pseudophakic patients who underwent treatment of idiopathic ERM were reviewed. Preoperative DRIL on OCT was correlated with VA at baseline and at 3 and 6 months after ERM surgery. DRIL was defined as the loss of distinction between the ganglion cell–inner plexiform layer complex, inner nuclear layer, and outer plexiform layer. DRIL severity was based on its extent within the central 2-mm region of a transfoveal B-scan (absent/mild: <one-third, severe: >one-third horizontal width). Results: Review of preoperative OCT showed severe DRIL in 41% and absent/mild DRIL in 59%. Severe DRIL was associated with worse baseline VA ( P < .001). Preoperative VA and DRIL status at baseline were both predictors of postoperative VA at follow-up time points ( P < .001). Severe DRIL was associated with significantly less improvement in VA at 6 months (–0.23 logMAR for absent/mild vs –0.14 for severe DRIL). Conclusions: Presence of severe preoperative DRIL correlates with worse baseline VA in patients with ERM and reduced VA improvement at 6 months. DRIL can be a strong predictor of long-term poor visual outcomes in ERM surgery.


Sign in / Sign up

Export Citation Format

Share Document