scholarly journals Atmospheric Impacts on Daytime Urban Heat Island

2018 ◽  
Vol 11 ◽  
pp. 117862211881020
Author(s):  
Eduardo Krüger ◽  
Patricia Drach ◽  
Rohinton Emmanuel

Daytime urban heat island effects can be weak compared to night time and even reversed (as in the case of cool islands, where urban locations display lower temperatures than at a rural site), mostly due to shading effects from buildings, vegetation, and other possible obstructions. The study of the relationship between the sky-view factor, an indicator of urban geometry in terms of sky openness, and urban heat island intensity generally focus on night time periods; only a few report on the daytime effect of the SVF. Such effect will also vary according to background atmospheric conditions of the period of measurements. This article is a commentary on a recent publication by the authors on a study of diurnal intra-urban temperature differences in a location with Koeppen’s Cfb climate.

2012 ◽  
Vol 51 (5) ◽  
pp. 842-854 ◽  
Author(s):  
Young-Hee Ryu ◽  
Jong-Jin Baik

AbstractThis study identifies causative factors of the urban heat island (UHI) and quantifies their relative contributions to the daytime and nighttime UHI intensities using a mesoscale atmospheric model that includes a single-layer urban canopy model. A midlatitude city and summertime conditions are considered. Three main causative factors are identified: anthropogenic heat, impervious surfaces, and three-dimensional (3D) urban geometry. Furthermore, the 3D urban geometry factor is subdivided into three subfactors: additional heat stored in vertical walls, radiation trapping, and wind speed reduction. To separate the contributions of the factors and interactions between the factors, a factor separation analysis is performed. In the daytime, the impervious surfaces contribute most to the UHI intensity. The anthropogenic heat contributes positively to the UHI intensity, whereas the 3D urban geometry contributes negatively. In the nighttime, the anthropogenic heat itself contributes most to the UHI intensity, although it interacts strongly with other factors. The factor that contributes the second most is the impervious-surfaces factor. The 3D urban geometry contributes positively to the nighttime UHI intensity. Among the 3D urban geometry subfactors, the additional heat stored in vertical walls contributes most to both the daytime and nighttime UHI intensities. Extensive sensitivity experiments to anthropogenic heat intensity and urban surface parameters show that the relative importance and ranking order of the contributions are similar to those in the control experiment.


2010 ◽  
Vol 2010 ◽  
pp. 1-10 ◽  
Author(s):  
Jeffrey B. Basara ◽  
Heather G. Basara ◽  
Bradley G. Illston ◽  
Kenneth C. Crawford

During late July and early August 2008, an intense heat wave occurred in Oklahoma City. To quantify the impact of the urban heat island (UHI) in Oklahoma City on observed and apparent temperature conditions during the heat wave event, this study used observations from 46 locations in and around Oklahoma City. The methodology utilized composite values of atmospheric conditions for three primary categories defined by population and general land use: rural, suburban, and urban. The results of the analyses demonstrated that a consistent UHI existed during the study period whereby the composite temperature values within the urban core were approximately C warmer during the day than the rural areas and over C warmer at night. Further, when the warmer temperatures were combined with ambient humidity conditions, the composite values consistently revealed even warmer heat-related variables within the urban environment as compared with the rural zone.


Energies ◽  
2020 ◽  
Vol 13 (22) ◽  
pp. 5909
Author(s):  
Ze Liang ◽  
Yueyao Wang ◽  
Jiao Huang ◽  
Feili Wei ◽  
Shuyao Wu ◽  
...  

At the city scale, the diurnal and seasonal variations in the relationship between urban form and the urban heat island effect remains poorly understood. To address this deficiency, we conducted an empirical study based on data from 150 cities in the Jing-Jin-Ji region of China from 2000 to 2015. The results derived from multiple regression models show that the effects of urban geometric complexity, elongation, and vegetation on urban heat island effect differ among different seasons and between day and night. The impacts of urban geometric factors and population density in summer, particularly those during the daytime, are significantly larger than those in winter. The influence of urban area and night light intensity is greater in winter than in summer and is greater during the day than at night. The effect of NDVI is greater in summer during the daytime. Urban vegetation is the factor with the greatest relative contribution during the daytime, and urban size is the dominant factor at night. Urban geometry is the secondary dominant factor in summer, although its contribution in winter is small. The relative contribution of urban geometry shows an upward trend at a decadal time scale, while that of vegetation decreases correspondingly. The results provide a valuable reference for top-level sustainable urban planning.


2020 ◽  
Vol 12 (21) ◽  
pp. 3491 ◽  
Author(s):  
Mingxing Chen ◽  
Yuan Zhou ◽  
Maogui Hu ◽  
Yaliu Zhou

Global large-scale urbanization has a deep impact on climate change and has brought great challenges to sustainable development, especially in urban agglomerations. At present, there is still a lack of research on the quantitative assessment of the relationship between urban scale and urban expansion and the degree of the urban heat island (UHI) effect, as well as a discussion on mitigation and adaptation of the UHI effect from the perspective of planning. This paper analyzes the regional urbanization process, average surface temperature variation characteristics, surface urban heat island (SUHI), which reflects the intensity of UHI, and the relationship between urban expansion, urban scale, and the UHI in the Beijing–Tianjin–Hebei (BTH) urban agglomeration using multi-source analysis of data from 2000, 2005, 2010, and 2015. The results show that the UHI effect in the study area was significant. The average surface temperature of central areas was the highest, and decreased from central areas to suburbs in the order of central areas > expanding areas > rural residential areas. From the perspective of spatial distribution, in Beijing, the southern part of the study area, the junction of Tianjin, Langfang, and Cangzhou are areas with intense SUHI. The scale and pace of expansion of urban land in Beijing were more than in other cities, the influencing range of SUHI in Beijing increased obviously, and the SUHI of central areas was most intense. The results indicate that due to the larger urban scale of the BTH urban agglomeration, it will face a greater UHI effect. The UHI effect was also more significant in areas of dense distribution in cities within the urban agglomeration. Based on results and existing research, planning suggestions are proposed for central areas with regard to expanding urban areas and suburbs to alleviate the urban heat island effect and improve the resilience of cities to climate change.


Sign in / Sign up

Export Citation Format

Share Document