scholarly journals Quantitative Analysis of Factors Contributing to Urban Heat Island Intensity

2012 ◽  
Vol 51 (5) ◽  
pp. 842-854 ◽  
Author(s):  
Young-Hee Ryu ◽  
Jong-Jin Baik

AbstractThis study identifies causative factors of the urban heat island (UHI) and quantifies their relative contributions to the daytime and nighttime UHI intensities using a mesoscale atmospheric model that includes a single-layer urban canopy model. A midlatitude city and summertime conditions are considered. Three main causative factors are identified: anthropogenic heat, impervious surfaces, and three-dimensional (3D) urban geometry. Furthermore, the 3D urban geometry factor is subdivided into three subfactors: additional heat stored in vertical walls, radiation trapping, and wind speed reduction. To separate the contributions of the factors and interactions between the factors, a factor separation analysis is performed. In the daytime, the impervious surfaces contribute most to the UHI intensity. The anthropogenic heat contributes positively to the UHI intensity, whereas the 3D urban geometry contributes negatively. In the nighttime, the anthropogenic heat itself contributes most to the UHI intensity, although it interacts strongly with other factors. The factor that contributes the second most is the impervious-surfaces factor. The 3D urban geometry contributes positively to the nighttime UHI intensity. Among the 3D urban geometry subfactors, the additional heat stored in vertical walls contributes most to both the daytime and nighttime UHI intensities. Extensive sensitivity experiments to anthropogenic heat intensity and urban surface parameters show that the relative importance and ranking order of the contributions are similar to those in the control experiment.

Energies ◽  
2020 ◽  
Vol 13 (22) ◽  
pp. 5909
Author(s):  
Ze Liang ◽  
Yueyao Wang ◽  
Jiao Huang ◽  
Feili Wei ◽  
Shuyao Wu ◽  
...  

At the city scale, the diurnal and seasonal variations in the relationship between urban form and the urban heat island effect remains poorly understood. To address this deficiency, we conducted an empirical study based on data from 150 cities in the Jing-Jin-Ji region of China from 2000 to 2015. The results derived from multiple regression models show that the effects of urban geometric complexity, elongation, and vegetation on urban heat island effect differ among different seasons and between day and night. The impacts of urban geometric factors and population density in summer, particularly those during the daytime, are significantly larger than those in winter. The influence of urban area and night light intensity is greater in winter than in summer and is greater during the day than at night. The effect of NDVI is greater in summer during the daytime. Urban vegetation is the factor with the greatest relative contribution during the daytime, and urban size is the dominant factor at night. Urban geometry is the secondary dominant factor in summer, although its contribution in winter is small. The relative contribution of urban geometry shows an upward trend at a decadal time scale, while that of vegetation decreases correspondingly. The results provide a valuable reference for top-level sustainable urban planning.


2021 ◽  
Author(s):  
Shihan Chen ◽  
Yuanjian Yang ◽  
Fei Deng ◽  
Yanhao Zhang ◽  
Duanyang Liu ◽  
...  

Abstract. Due to rapid urbanization and intense human activities, the urban heat island (UHI) effect has become a more concerning climatic and environmental issue. A high spatial resolution canopy UHI monitoring method would help better understand the urban thermal environment. Taking the city of Nanjing in China as an example, we propose a method for evaluating canopy UHI intensity (CUHII) at high resolution by using remote sensing data and machine learning with a Random Forest (RF) model. Firstly, the observed environmental parameters [e.g., surface albedo, land use/land cover, impervious surface, and anthropogenic heat flux (AHF)] around densely distributed meteorological stations were extracted from satellite images. These parameters were used as independent variables to construct an RF model for predicting air temperature. The correlation coefficient between the predicted and observed air temperature in the test set was 0.73, and the average root-mean-square error was 0.72 °C. Then, the spatial distribution of CUHII was evaluated at 30-m resolution based on the output of the RF model. We found that wind speed was negatively correlated with CUHII, and wind direction was strongly correlated with the CUHII offset direction. The CUHII reduced with the distance to the city center, due to the de-creasing proportion of built-up areas and reduced AHF in the same direction. The RF model framework developed for real-time monitoring and assessment of high-resolution CUHII provides scientific support for studying the changes and causes of CUHII, as well as the spatial pattern of urban thermal environments.


2005 ◽  
Vol 44 (5) ◽  
pp. 591-605 ◽  
Author(s):  
Yeon-Hee Kim ◽  
Jong-Jin Baik

Abstract The spatial and temporal structure of the urban heat island in Seoul, Korea, is investigated using near-surface temperature data measured at 31 automatic weather stations (AWSs) in the Seoul metropolitan area for the 1-yr period from March 2001 to February 2002. The urban heat island in Seoul deviates considerably from an idealized, concentric heat island structure, mainly because of the location of the main commercial and industrial sectors and the local topography. Relatively warm regions extend in the east–west direction and relatively cold regions are located near the northern and southern mountains. Several warm cores are observed whose intensity, size, and location are found to vary seasonally and diurnally. Similar to previous studies, the urban heat island in Seoul is stronger in the nighttime than in the daytime and decreases with increasing wind speed and cloud cover, but it is least developed in summer. The average maximum urban heat island intensity is 2.2°C over the 1-yr period and it is 3.4°C at 0300 local standard time (LST) and 0.6°C at 1500 LST. The reversed urban heat island is occasionally observed in the afternoon, but its intensity is very weak. An empirical orthogonal function (EOF) analysis is performed to find the dominant modes of variability in the Seoul urban heat island. In the analysis using temperature data that are averaged for each hour of the 1-yr period, the first EOF explains 80.6% of the total variance and is a major diurnal mode. The second EOF, whose horizontal structure is positive in the eastern part of Seoul and is negative in the western part, explains 16.0% of the total variance. This mode is related to the land use type and the diurnal pattern of anthropogenic heat release. In the analysis using temperature data at 0300 LST, the leading four modes explain 72.4% of the total variance. The first EOF reflects that the weakest urban heat island intensity is in summer. It is found that the urban heat island in Seoul is stronger on weekdays than weekends.


Climate ◽  
2019 ◽  
Vol 7 (6) ◽  
pp. 75 ◽  
Author(s):  
Ilias Agathangelidis ◽  
Constantinos Cartalis ◽  
Mat Santamouris

Cities worldwide are getting warmer due to the combined effects of urban heat and climate change. To this end, local policy makers need to identify the most thermally vulnerable areas within cities. The Local Climate Zone (LCZ) scheme highlights local-scale variations; however, its classes, although highly valuable, are to a certain extent generalized in order to be universally applicable. High spatial resolution indicators have the potential to better reflect city-specific challenges; in this paper, the Urban Heat Exposure (UHeatEx) indicator is developed, integrating the physical processes that drive the urban heat island (UHI). In particular, the urban form is modeled using remote sensing and geographical information system (GIS) techniques, and used to estimate the canyon aspect ratio and the storage heat flux. The Bowen ratio is calculated using the aerodynamic resistance methodology and downscaled remotely sensed surface temperatures. The anthropogenic heat flux is estimated via a synergy of top–down and bottom–up inventory approaches. UHeatEx is applied to the city of Athens, Greece; it is correlated to air temperature measurements and compared to the LCZs classification. The results reveal that UHeatEx has the capacity to better reflect the strong intra-urban variability of the thermal environment in Athens, and thus can be supportive for adaptation responses. High-resolution climate projections from the EURO-CORDEX ensemble for the region show that the adverse effects of the existing thermal inequity are expected to worsen in the coming decades.


2019 ◽  
Vol 11 (14) ◽  
pp. 1645 ◽  
Author(s):  
Matamyo Simwanda ◽  
Manjula Ranagalage ◽  
Ronald C. Estoque ◽  
Yuji Murayama

Africa’s unprecedented, uncontrolled and unplanned urbanization has put many African cities under constant ecological and environmental threat. One of the critical ecological impacts of urbanization likely to adversely affect Africa’s urban dwellers is the urban heat island (UHI) effect. However, UHI studies in African cities remain uncommon. Therefore, this study attempts to examine the relationship between land surface temperature (LST) and the spatial patterns, composition and configuration of impervious surfaces/green spaces in four African cities, Lagos (Nigeria), Nairobi (Kenya), Addis Ababa (Ethiopia) and Lusaka (Zambia). Landsat OLI/TIRS data and various geospatial approaches, including urban–rural gradient, urban heat island intensity, statistics and urban landscape metrics-based techniques, were used to facilitate the analysis. The results show significantly strong correlation between mean LST and the density of impervious surface (positive) and green space (negative) along the urban–rural gradients of the four African cities. The study also found high urban heat island intensities in the urban zones close (0 to 10 km) to the city center for all cities. Generally, cities with a higher percentage of the impervious surface were warmer by 3–4 °C and vice visa. This highlights the crucial mitigating effect of green spaces. We also found significant correlations between the mean LST and urban landscape metrics (patch density, size, shape, complexity and aggregation) of impervious surfaces (positive) and green spaces (negative). The study revealed that, although most African cities have relatively larger green space to impervious surface ratio with most green spaces located beyond the urban footprint, the UHI effect is still evident. We recommend that urban planners and policy makers should consider mitigating the UHI effect by restoring the urban ecosystems in the remaining open spaces in the urban area and further incorporate strategic combinations of impervious surfaces and green spaces in future urban and landscape planning.


Author(s):  
Tao Chen ◽  
Anchang Sun ◽  
Ruiqing Niu

Man-made materials now cover a dominant proportion of urban areas, and such conditions not only change the absorption of solar radiation, but also the allocation of the solar radiation and cause the surface urban heat island effect, which is considered a serious problem associated with the deterioration of urban environments. Although numerous studies have been performed on surface urban heat islands, only a few have focused on the effect of land cover changes on surface urban heat islands over a long time period. Using six Landsat image scenes of the Metropolitan Development Area of Wuhan, our experiment (1) applied a mapping method for normalized land surface temperatures with three land cover fractions, which were impervious surfaces, non-chlorophyllous vegetation and soil and vegetation fractions, and (2) performed a fitting analysis of fierce change areas in the surface urban heat island intensity based on a time trajectory. Thematic thermal maps were drawn to analyze the distribution of and variations in the surface urban heat island in the study area. A Multiple Endmember Spectral Mixture Analysis was used to extract the land cover fraction information. Then, six ternary triangle contour graphics were drawn based on the land surface temperature and land cover fraction information. A time trajectory was created to summarize the changing characteristics of the surface urban heat island intensity. A fitting analysis was conducted for areas showing fierce changes in the urban heat intensity. Our results revealed that impervious surfaces had the largest impacts on surface urban heat island intensity, followed by the non-chlorophyllous vegetation and soil fraction. Moreover, the results indicated that the vegetation fraction can alleviate the occurrence of surface urban heat islands. These results reveal the impact of the land cover fractions on surface urban heat islands. Urban expansion generates impervious artificial objects that replace pervious natural objects, which causes an increase in land surface temperature and results in a surface urban heat island.


Author(s):  
Chen Yang ◽  
Qingming Zhan ◽  
Sihang Gao ◽  
Huimin Liu

Conspicuous expansion and intensification of impervious surfaces accompanied by rapid urbanization are widely recognized to have exerted evident impacts on the urban thermal environment. Investigating the spatially and temporally varying relationships between Land Surface Temperature (LST) and impervious surfaces (IS) at multiple scales is of great significance for steering IS expansion and intensification. This study proposes an analytical framework to investigate the spatiotemporal variations of LST and its responses to IS in Wuhan, China at both city scale and sub-region scale. The summer LST patterns in 2002–2017 are extracted by Multi-Task Gaussian Process (MTGP) model from raw 8-day synthesized MODerate-resolution Imaging Spectroradiometer (MODIS) LST data. At the city scale, the weighted center of LST (LSTWC) and impervious surface fraction (ISFWC), multi-temporal trajectories and coupling indicators are utilized to comprehensively examine the spatial and temporal dynamics of LST and IS within Wuhan. At the sub-region scale, urban heat island ratio index (URI), impervious surfaces contribution index (ISCI) and sprawl rate are introduced for further quantifying the relationships of LST and IS. The results reveal that IS and hot thermal landscapes expanded by 407.43 km2 and 255.82 km2 in Wuhan in 2002–2017 at city scale. The trajectories of LSTWCs and ISFWCs are visually coherent and both heading to southeast direction in general. At the sub-region scale, the specific cardinal directions with the highest ISCI variations are examined to be the exact directions of ISFWC trajectories in 2002–2017. The results reveal that the spatiotemporal variations of LST and IS are highly correlated at both city and sub-region scales within Wuhan, thus testifying the significance of steering IS expansion and renewal for controlling urban thermal environment deterioration.


2014 ◽  
Vol 2014 ◽  
pp. 1-11
Author(s):  
Lei Jiang ◽  
Lixin Lu ◽  
Lingmei Jiang ◽  
Yuanyuan Qi ◽  
Aqiang Yang

The Town Energy Budget (TEB) model coupled with the Regional Atmospheric Modeling System (RAMS) is applied to simulate the Urban Heat Island (UHI) phenomenon in the metropolitan area of Beijing. This new model with complex and detailed surface conditions, called TEB-RAMS, is from Colorado State University (CSU) and the ASTER division of Mission Research Corporation. The spatial-temporal distributions of daily mean 2 m air temperature are simulated by TEB-RAMS during the period from 0000 UTC 01 to 0000 UTC 02 July 2003 over the area of 116°E~116.8°E, 39.6°N~40.2°N in Beijing. The TEB-RAMS was run with four levels of two-way nested grids, and the finest grid is at 1 km grid increment. An Anthropogenic Heat (AH) source is introduced into TEB-RAMS. A comparison between the Land Ecosystem-Atmosphere Feedback model (LEAF) and the detailed TEB parameterization scheme is presented. The daily variations and spatial distribution of the 2 m air temperature agree well with the observations of the Beijing area. The daily mean 2 m air temperature simulated by TEB-RAMS with the AH source is 0.6 K higher than that without specifying TEB and AH over the metropolitan area of Beijing. The presence of urban underlying surfaces plays an important role in the UHI formation. The geometric morphology of an urban area characterized by road, roof, and wall also seems to have notable effects on the UHI intensity. Furthermore, the land-use dataset from USGS is replaced in the model by a new land-use map for the year 2010 which is produced by the Institute of Remote Sensing and Digital Earth (RADI), Chinese Academy of Sciences (CAS). The simulated regional mean 2 m air temperature is 0.68 K higher from 01 to 02 July 2003 with the new land cover map.


2020 ◽  
Vol 59 (11) ◽  
pp. 1827-1843
Author(s):  
Timothy J. Cady ◽  
David A. Rahn ◽  
Nathaniel A. Brunsell ◽  
Ward Lyles

AbstractImpervious surfaces and buildings in the urban environment alter the radiative balance and surface energy exchange and can lead to warmer temperatures known as the urban heat island (UHI), which can increase heat-related illness and mortality. Continued urbanization and anthropogenic warming will enhance city temperatures worldwide, raising the need for viable mitigation strategies. Increasing green space throughout a city is a viable option to lessen the impacts of the UHI but can be difficult to implement. The potential impact of converting existing vacant lots in Kansas City, Missouri, to green spaces is explored with numerical simulations for three heat-wave events. Using data on vacant property and identifying places with a high fraction of impervious surfaces, the most suitable areas for converting vacant lots to green spaces is determined. Land-use/land-cover datasets are modified to simulate varying degrees of feasible conversion of urban to green spaces in these areas, and the local cooling effect using each strategy is compared with the unmodified simulation. Under more aggressive greening strategies, a mean local cooling impact of 0.5°–1.0°C is present within the focus area itself during the nighttime hours. Some additional cooling via the “park cool island” is possible downwind of the converted green spaces under the more aggressive scenarios. Although moderate and conservative strategies of conversion could still lead to other benefits, those strategies have little impact on cooling. Only an aggressive approach yields significant cooling.


Sign in / Sign up

Export Citation Format

Share Document