Influence of fiber orientation on solid particle erosion of uni/multidirectional carbon fiber/glass fiber reinforced epoxy composites

Author(s):  
Mehmet Bagci

This article describes the development of unidirectional and multidirectional laminated composites consisting of thermoplastic epoxy resin reinforced with glass/carbon fiber, and studies their solid particle erosion behavior under different operating conditions. The erosion rates of the unidirectional carbon fiber/epoxy composites [0°, 30°, 45°, 60°, 90°] and multidirectional glass fiber/epoxy composites ([0°/−90°/0°], [30°/−60°/30°], [45°/−45°/45°], [60°/−30°/60°], [90°/0°/90°]) were especially scrutinized based on their respective fiber orientations. In addition; the test specimens were evaluated at three different impingement angles of 30°, 60°, and 90° with an impact velocity of 34 m/s. Slightly rounded and irregular Al2O3 particles with an average diameter of 400 µm were used. An optimal fiber orientation combination was determined, which led to minimization of the erosion rate. Moreover, the variation of erosion rates with various laminate orientations were characterized by using X-ray diffraction patterns, 3D digital mapping method, and scanning electron microscopy.

Author(s):  
N. H. Yang ◽  
H. Nayeb-Hashemi

The effect of solid particle erosion on the strength properties of E-glass/epoxy composite was investigated. Solid particle erosion with SiC particles 400 μm to 500 μm in diameter was simulated on 12 ply [45°/−45°/0°/45°/−45°/0°]s E-glass/epoxy composites with constant particle velocity of 42.5 m/s at impact angles of 90°, 60°, and 30° for 30, 60, 90 and 120 seconds. Damaged and undamaged specimens were subjected to tensile tests while monitoring their acoustic emission (AE) activity. An erosion damage parameter was defined as a function of the particle impact angle and erosion duration to determine the residual tensile strength of the composite. Scanning electron microscope (SEM) images of the erosion damaged specimens revealed the same damage mechanism occurred at different impact angles. The distribution of AE events by event duration, ring down counts and energy distribution were used to characterize the different damage mechanisms that occurred during tensile loading of damaged and undamaged specimens. The results showed AE activity could be used to distinguish between different damage mechanisms within the composite, such as fiber/matrix debonding, delamination and fiber fracture. The Weibull probability distribution model and the AE stress delay parameter model were developed to relate the AE activity to the erosion damage and residual strength. The results showed both the Weibull probability model and the stress delay model could be used to predict residual strength of the composites.


2021 ◽  
Vol 63 (12) ◽  
pp. 1142-1149
Author(s):  
Aygen Ahsen Erdoğan ◽  
Erol Feyzullahoğlu ◽  
Sinan Fidan ◽  
Tamer Sinmazçelik

Abstract AA6082-T6 aluminium alloy is a candidate material, specifically in aviation applications, which could be exposed to solid particle erosion. Solid particle erosion occurs due to repetitive high-speed impact of erodent particles on a target material. Every individual impingement of the erodent particle results in elastic/plastic deformations and material removal from the target material. In this study, solid particle erosion investigations were carried out under 1.5 and 3 bar with 60 and 120 mesh alumina particles. Both erosion rates and worn volumes of the samples were calculated and measured. Also, the authors present the plastic deformation rate in this study as a proportion of the actual (measured) worn volume to the equivalent volume of the mass loss. In addition, the average surface roughness of the samples were investigated, which is another parameter for understanding the effect of plastic deformation on surface properties during particle erosion.


2019 ◽  
Vol 71 (2) ◽  
pp. 242-252 ◽  
Author(s):  
Vineet Shibe ◽  
Vikas Chawla

PurposeThis paper aims to perform the solid particle erosion studies in simulated coal-fired boiler conditions with a view to compare the erosion behavior of two different types of detonation gun (D-Gun) sprayed cermet coating powders, that is, WC-12%Co and Cr3C2-25%NiCr on ASTM A36 steel and bare (uncoated) ASTM A36 steel.Design/methodology/approachErosion studies were performed using an air jet erosion test rig at impingement angles of 45°, 60° and 90°. During the erosion studies weight loss, erosion rates in terms of volume loss (mm3/g) and measurement of erosion profiles were determined using optical profilometer.FindingsBoth cermet coatings had successfully protected the ASTM A36 steel from erosion at impingement angles of 45°, 60° and 90°. In the case of bare ASTM A36 steel, the erosion rates were maximal at an impingement angle of 45° and minimal at an impingement angle of 90°, thus depicting the peculiar erosion behavior of ductile materials. WC-12%Co coated specimens exhibited erosion behavior that is closer to the behavior of ductile materials. Cr3C2-25%NiCr coated specimens exhibited the maximum erosion rate at an impingement angle of 90° and minimum at an impingement angle of 45°, hence depicting the typical behavior of brittle materials.Practical implicationsIt is expected that these results will contribute to the improvement of erosion resistance of induced draft fans, by the application of D-Gun sprayed WC-12%Co and Cr3C2-25%NiCr cermet coatings.Originality/valueThis paper evaluates the solid particle erosion behavior of bare and cermet-coated ASTM A36 steel which will be helpful in choosing the suitable cermet coating for induced draft fan applications.


2021 ◽  
Author(s):  
Ehsan Akbarzadeh

To aid in the materials selection of gas control valves, the solid particle erosion behaviour of twelve metals was investigated using impinging jets of magnetite particles. The erosion rates were measured for two different particle sizes, two different velocities, and six different impingement angles. Scanning electron micrography and EDX (Energy Dispersive X-ray analysis) mapping was used to investigate the erosion mechanisms and the extent of particle embedding. There was no measurable erosion for the Tungsten Carbide samples, even for very long exposure times. For nickel plated steel, the plating was found to delaminate, resulting in a brittle erosive response. For all other tested materials, the measured erosion rates and scanning electron micrographs indicated a ductile erosion mechanism under all conditions considered. The erosion rates were found to fit a semi-empirical erosion model due to Oka et al. [1] well. The most erosion resistant materials were found to be the Solid tungsten carbide (WC) and Solid Stellite 12 and the least erosion resistant materials were A1018 carbon steel nickel plated and A240 Type 410 stainless steel plate. With all other conditions being equal, a larger erosion rate was measured when utilizing the smaller particles, than when the large particles were used. This counter-intuitive result was demonstrated to be due to a combination of effects, including the formation of thicker hardened layer more embedded particles, and more particle fragmentation when utilizing the larger particles.


Sign in / Sign up

Export Citation Format

Share Document