Comparison of tribological performance of roller follower and flat follower under mixed elastohydrodynamic lubrication regime

Author(s):  
Amir Torabi ◽  
Saleh Akbarzadeh ◽  
Mohammadreza Salimpour

In this study, a numerical model is developed to show the performance improvement of a cam–follower mechanism when using a roller type follower compared to the flat-faced follower. Nonconformal geometry besides the thermal effects due to the shearing of the lubricant film results in formation of a thin film in which the asperities contribute in carrying the load. The numerical model is developed in which the geometry, load, speed, lubricant properties, and the surface roughness profile is taken as input and the film thickness and friction coefficient as a function of cam angle are predicted. The asperities are assumed to have elastic, elasto-plastic, and plastic deformation. Simulation results indicated that the thermal effects cannot be neglected. Surface roughness is also a key parameter that affects the pressure distribution, film thickness, and friction coefficient. Finally, asperity and hydrodynamic pressure is reported and the performance of the two mechanisms is compared. Roller follower has a considerable preference in terms of friction coefficient compared to flat-faced follower. The minimum film thickness, however, is slightly larger in the flat follower.

2015 ◽  
Vol 736 ◽  
pp. 57-63
Author(s):  
Panichakorn Jesda ◽  
Wongseedakeaw Khanittha

This paper presents the effect of surface roughness on soft elastohydrodynamic lubrication in circular contact with non-Newtonian lubricant. The time independent modified Reynolds equation, elastic equation and lubricant viscosity equation were formulated for compressible fluid. Perturbation method, Newton-Raphson method, finite different method and full adaptive multigrid method were implemented to obtain the film pressure, film thickness profiles and friction coefficient in the contact region at various the amplitude of surface roughness, surface speed of sphere, modulus of elasticity and radius of sphere. The simulation results showed that the film thickness in contact region depended on the profile of surface roughness. The minimum film thickness decreased but maximum film pressure and friction coefficient increase when the amplitude of surface roughness and modulus of elasticity increased. For increasing surface speeds, the minimum film thickness and friction coefficient increase but maximum film pressure decreases. When radius of sphere increases, the minimum film thickness increases but maximum film pressure and friction coefficient decrease.


2012 ◽  
Vol 482-484 ◽  
pp. 1057-1061
Author(s):  
Sountaree Rattapasakorn ◽  
Jesda Panichakorn ◽  
Mongkol Mongkolwongrojn

This paper presents the effect of surface roughness on the performance characteristics of elastohydrodynamic lubrication with non-Newtonian fluid base on Carreau viscosity model in elliptical contact. The time independent modified Reynolds equation and elastic equation were formulated for compressible fluid. Perturbation method, Newton Raphson method and full adaptive multigrid method were implemented to obtain the film pressure, film thickness profiles and friction coefficient in the contact region at various amplitude of combined surface roughness, applied loads, speeds and elliptic ratio. Simulation results show surface roughness amplitude has significant affected the film pressure in the contact region. The minimum film thickness decreases but friction coefficient increases when the combined roughness and applied loads increases. The minimum film thickness and friction coefficient both increase as the relative velocity of the ball and the plate is increase. For increasing the elliptic ratio, the minimum film thickness increases but the friction coefficient decreases.


Author(s):  
Eduardo de la Guerra Ochoa ◽  
Javier Echávarri Otero ◽  
Enrique Chacón Tanarro ◽  
Benito del Río López

This article presents a thermal resistances-based approach for solving the thermal-elastohydrodynamic lubrication problem in point contact, taking the lubricant rheology into account. The friction coefficient in the contact is estimated, along with the distribution of both film thickness and temperature. A commercial tribometer is used in order to measure the friction coefficient at a ball-on-disc point contact lubricated with a polyalphaolefin base. These data and other experimental results available in the bibliography are compared to those obtained by using the proposed methodology, and thermal effects are analysed. The new approach shows good accuracy for predicting the friction coefficient and requires less computational cost than full thermal-elastohydrodynamic simulations.


2012 ◽  
Vol 134 (1) ◽  
Author(s):  
M. Masjedi ◽  
M. M. Khonsari

Three formulas are derived for predicting the central and the minimum film thickness as well as the asperity load ratio in line-contact EHL with provision for surface roughness. These expressions are based on the simultaneous solution to the modified Reynolds equation and surface deformation with consideration of elastic, plastic and elasto-plastic deformation of the surface asperities. The formulas cover a wide range of input and they are of the form f(W, U, G, σ¯, V), where the parameters represented are dimensionless load, speed, material, surface roughness and hardness, respectively.


Author(s):  
V. D’Agostino ◽  
V. Petrone ◽  
A. Senatore

A numerical solution of elastohydrodynamic lubrication (EHL) contact between two rough surface cylinders is presented. In the theoretical approach the free-volume viscosity model is used to describe the piezo-viscous behavior of the lubricant in a Newtonian Elastohydrodynamic line contact [1,2]. Random rough surfaces with Gaussian and exponential statistics have been generated using a method outlined by Garcia and Stoll [3], where an uncorrelated distribution of surface points using a random number generator is convolved with a Gaussian filter to achieve correlation. This convolution is most efficiently performed using the discrete Fast Fourier Transform (FFT) algorithm, which in MATLAB is based on the FFTW library [4]. The maximum pressure and average film thickness are studied at different values of RMS, skewness, kurtosis, autocorrelation function and correlation length. Numerical examples show that skewness and kurtosis have a great effect on the parameters of EHD lubrication. Surface roughness, indeed, tends to reduce the minimum film thickness and it produces pressure fluctuations inside the conjunction which tend to increase the maximum stress. In this way the dynamic stress increases and tends to reduce the fatigue life of the components. It can be seen that the pressures developed in the fluid film in the case of rough surfaces fluctuate with the same frequency of the surface roughness. These pressure ripples correspond to the asperity peaks. This indicates that surface roughness causes very high local contact pressures which may lead to local thinning of the film. A significant reduction has been also observed in the minimum film thickness due to surface roughness.


2009 ◽  
Vol 132 (1) ◽  
Author(s):  
H. Sojoudi ◽  
M. M. Khonsari

This paper presents a simple approach to predict the behavior of friction coefficient in the sliding lubricated point contact. Based on the load-sharing concept, the total applied load is supported by the combination of hydrodynamic film and asperity contact. The asperity contact load is determined in terms of maximum Hertzian pressure in the point contact while the fluid hydrodynamic pressure is calculated through adapting the available numerical solutions of elastohydrodynamic lubrication (EHL) film thickness formula for smooth surfaces. The simulations presented cover the entire lubrication regime including full-film EHL, mixed-lubrication, and boundary-lubrication. The results of friction, when plotted as a function of the sum velocity, result in the familiar Stribeck-type curve. The simulations are verified by comparing the results with published experimental data. A parametric study is conducted to investigate the influence of operating condition on the behavior of friction coefficient. A series of simulations is performed under various operating conditions to explore the behavior of lift-off speed. An equation is proposed to predict the lift-off speed in sliding lubricated point contact, which takes into account the surface roughness.


2015 ◽  
Vol 736 ◽  
pp. 45-52
Author(s):  
Panichakorn Jesda

<img style="border-width: 0px; margin: 0px; padding: 0px; left: 0px; top: 0px; width: 60px; height: 25px; visibility: hidden; position: absolute; z-index: 2147483647; cursor: pointer;" id="bing-msbbp-copy-img" src="" /><a style="border-width: 0px; margin: 0px; padding: 0px; left: 0px; top: 0px; width: 60px; height: 25px; visibility: hidden; position: absolute; z-index: 2147483647; cursor: pointer;" id="bing-msbbp-search-anchor" target="_blank"></a><img style="border-width: 0px; margin: 0px; padding: 0px; left: 0px; top: 0px; width: 60px; height: 25px; visibility: hidden; position: absolute; z-index: 2147483647; cursor: pointer;" id="bing-msbbp-search-img" src="" />This paper presents the results of a analysis of rough thermo-elastohydrodynamic lubrication (TEHL) of line contact with non-Newtonian lubricant blended with Al2O3nanoparticles and MoS2 microparticles. The simultaneous systems of time independent modified Reynolds equation, elasticity equation, load carrying with micro particle equation and energy equation were solved numerically using multigrid multilevel with full approximation technique. In this study, the effect of Al2O3nanoparticle and MoS2microparticle additives and surface roughness were implemented to obtain film thickness, film pressure, film temperature, friction coefficient and load carrying with microparticle in the contact region. The simulation results showed that the maximum film temperature and friction coefficient increase slightly but the minimum film thickness decreases slightly with an increase in Al2O3nanoparticle concentration due to thermal enhancement of nanofluid. For increasing of microparticle concentration, the minimum film thickness and friction coefficient decrease because the increasing of friction heating of MoS2microparticle.


Author(s):  
Mongkol Mongkolwongrojn ◽  
Khanittha Wongseedakaew ◽  
Francis E. Kennedy

This paper presents the analysis of elastohydrodynamic lubrication (EHL) of two parallel cylinders in line contact with non-Newtonian fluids under oscillatory motion. The effects of transverse harmonic surface roughness are also investigated in the numerical simulation. The time-dependent Reynolds equation uses a power law model for viscosity. The simultaneous system of modified Reynolds equation and elasticity equation with initial conditions was solved using multi-grid multi-level method with full approximation technique. Film thickness and pressure profiles were determined for smooth and rough surfaces in the oscillatory EHL conjunctions, and the film thickness predictions were verified experimentally. For an increase in the applied load on the cylinders, the minimum film thickness calculated numerically becomes smaller. The predicted film thickness is slightly higher than the film thickness obtained experimentally, owing to cavitation that occurred in the experiments. For both hard and soft EHL contacts, the minimum film thickness under oscillatory motion is very thin near the trailing edge of the contact, especially for stiffer surfaces. The surface roughness and power law index of the non-Newtonian lubricant both have significant effects on the film thickness and pressure profile between the cylinders under oscillatory motion.


2012 ◽  
Vol 452-453 ◽  
pp. 1291-1295 ◽  
Author(s):  
Mongkolwongrojn Mongkol ◽  
Panichakorn Jesda

This paper presents the effects of a sudden load change and sudden speed change on the performance characteristics of two surfaces under elliptical contact with elastohydrodynamic lubrication. The non-Newtonian lubricant for the research work are modeled based on Carreau viscosity model. The time dependent modified Reynolds equation and elastic equation were formulated for compressible fluid. Perturbation method, Newton Raphson method and full adaptive multigrid method were implemented and solved to obtain the film pressure, film thickness profiles and friction coefficient in the contact regime at various applied loads and speeds. Simulation results show the friction coefficient increase significantly under sudden loads. The minimum film thickness and friction coefficient both decrease significantly as speed is decreased.


2016 ◽  
Vol 68 (2) ◽  
pp. 183-190 ◽  
Author(s):  
Xingbao Huang ◽  
Youqiang Wang

Purpose – This paper aims to investigate the mechanism of spur gears running-in and to solve the lubrication problems of teeth running-in. Design/methodology/approach – The elastohydrodynamic lubrication (EHL) model considering solid particles was established by applying multi-grid and multiple-grid integration methods to the numerical solution. Findings – In the region where debris settle, transient pressure increases sharply, and a noticeable increase in the running-in load causes a remarkable increase in both the centre and maximum pressures and a slight increase in the minimum film thickness. Roughness wavelength makes a considerable difference to the minimum film thickness at double-to-single tooth transient. A considerable increase in rotation velocity can cause a remarkable reduction in both the centre and maximum pressures but an amazing increase in the minimum film thickness. The effects of roughness amplitude on the maximum pressure are considerably distinct. Research limitations/implications – Research on EHL of spur gears in the running-in process considering solid particles, surface roughness and time-variant effect is meaningful to practical gears running-in. Thermal effect can be included in the next study. Practical implications – The analysis results can be applied to predict and improve lubrication performance of the meshing teeth. Social implications – The aim is to reduce gears’ manufacture and running-in costs and improve economic performance. Originality/value – The EHL model that considers solid particles was established. The Reynolds equation was deduced taking the effects of solid particles into account. The EHL of spur gears running-in was investigated considering the time-variant effect, surface roughness, running-in load and rotation speed.


Sign in / Sign up

Export Citation Format

Share Document