Study on the normal contact stiffness of the fractal rough surface in mixed lubrication

Author(s):  
Yunyun Sun ◽  
Huifang Xiao ◽  
Jinwu Xu ◽  
Wennian Yu

In this paper, an elastic interface model is developed to theoretically analyze the contact stiffness of a mixed lubrication surface where the solid and the lubricant contacts have to-be-determined contributions to the whole contact stiffness. The interfacial contact stiffness is composed of the solid contact stiffness and the lubricant contact stiffness, in which the two components are associated with each other via the equivalent thickness of lubricant. Based on the combination of two widely acknowledged ultrasonic measurement models and the Taylor approximating equation, the derivation of the lubricant contact stiffness is mostly affected by the material properties and the equivalent thickness of lubricant, and the equivalent thickness is determined by the solid contact properties under the mixed lubrication condition. Results of the mathematical analysis show that the contact stiffness of the mixed lubrication surface is larger than that of the dry rough surface due to the presence of lubricant. The interfacial contact stiffness of the mixed lubrication is obviously affected by the surface topography and the lubricant property. The proportions of contact stiffness contributed from the solid part and the lubricant part are varying with the contact area and the surface topography. Model predictions are compared with experiment results to verify the accuracy of proposed model. The analysis of the interfacial contact stiffness involved in mixed lubrication provides a theoretical basis for the performance prediction of machine tools, and might be useful to elucidate the contact properties by ultrasonic pulse probing in real engineering applications.

Author(s):  
Yongquan Zhang ◽  
Hong Lu ◽  
Xinbao Zhang ◽  
He Ling ◽  
Wei Fan ◽  
...  

Considering the rough surface as a fractal model makes the research of contact parameters more practical. In the fractal model of the machined surface, the parameters describing the surface topography are independent of the measurement resolution. Based on the elastic, elasto-plastic and plastic deformations of a single pair of contact asperities, a normal contact stiffness model using the fractal model for surface topography description is proposed in this paper. The specimens machined by milling and grinding methods are used to verify the proposed contact stiffness model based on the fractal theory. The experimental and theoretical results indicate that the proposed contact stiffness model is appropriate for the machined joint surfaces.


2020 ◽  
Author(s):  
Chao-Chao Yin ◽  
Hai-Hong Huang ◽  
Dan Zhou ◽  
Zhi-Feng Liu

Abstract Effects of surface texturing on the normal contact stiffness of joint surfaces had been investigated by experiments in many previous researches; however, there are relatively few theoretical models in this regard. The rough surface with surface texturing can be divided into two parts: the textured zone and the remaining zone, and their theoretical models are established respectively in this research. For the textured zone, the texture is modeled theoretically based on the three-dimensional topographic data obtained via a 3D-CCMP1 type laser profilometer from TRIMOS. For the remaining zone, the model of normal contact stiffness is established based on the fractal theory for the surface topography description and elastic-plastic deformation of surface asperities, and the structure function method is used to calculate the fractal dimension of rough surface profiles. In the experiment, the normal contact stiffness of specimens is obtained under different normal loads, and the test results are compared with the theoretical predictions. The result shows that the predictions of proposed theoretical model are in good agreement with the experimental data. For the joint surfaces with Sa>2.69 μm, the normal contact stiffness can be effectively increased through proper surface texturing.


2019 ◽  
Vol 142 (3) ◽  
Author(s):  
Gong Cheng ◽  
Ke Xiao ◽  
Jiaxu Wang ◽  
Wei Pu ◽  
Yanfeng Han

Abstract Gear meshing stiffness is the key parameter to study the gear dynamic performance. However, the study on the calculation of gear meshing stiffness considering lubrication, especially mixed lubrication, is still insufficient. Based on the three-dimensional linear contact mixed elastohydrodynamic lubrication model and the contact stiffness calculation method of rough surface, a method for calculating the gear meshing stiffness under mixed lubrication is proposed in this paper. According to the proposed calculation method, the effects of speed, external load, and roughness amplitude on gear meshing stiffness are further explored. The method can take into account the real rough surface topography and lubrication in the meshing process, so it may be more advantageous than the conventional method to some extent.


Author(s):  
Huifang Xiao ◽  
Yunyun Sun ◽  
Xiaojun Zhou ◽  
Zaigang Chen

In this paper, a general contact stiffness model is proposed to study the mixed lubricated contact between a rough surface and a rigid flat plate, which is the equivalent model for the contact between two rough surfaces and is the general case for engineering contact interfaces. The total interfacial contact stiffness is composed of the dry rough surface contact stiffness and the liquid lubricant contact stiffness. The GW model is used for surface topography description and the contact stiffness of a single asperity is derived from the Hertz contact theory. The whole dry rough contact stiffness is obtained by multiple the single asperity contact stiffness with the number of contact asperities, which is derived based on the statistical model. The liquid film stiffness is derived based on a spring model. The stiffness contributions from the asperity contact part and lubricant layer part are separated and analyzed.


2016 ◽  
Vol 846 ◽  
pp. 300-305
Author(s):  
Chong Pu Zhai ◽  
Yi Xiang Gan ◽  
Dorian Hanaor

A numerical model was proposed to investigate the contact behaviour of a solid with a rough surface squeezed against a rigid flat plane. We considered simulated hierarchical surface structures as well as scanned surface data obtained by the profilometry of isotropically roughened specimens. The simulated and treated surfaces were characterised using statistical and fractal parameters. The evolution of contact stiffness under increasing normal compression was analysed through the total truncated area at varying heights, in order to relate contact mechanics to different surface parameters employed for surface characterisation. For a relatively small surface interference, the predicted stress-dependent normal contact stiffness of both scanned and simulated surfaces is in good agreement with experimental observation from nanoindentation tests, revealing a power-law function of the normal load, with the exponent of this relationship closely depending on the fractal dimension of rough surfaces. The numerical results show that the amplitude of a fractal rough surface mainly contributes to the magnitude of the contact stiffness at a given normal load.


Sign in / Sign up

Export Citation Format

Share Document