Analysis of thermal dynamic micro-EHL considering bearing assembly temperature

Author(s):  
Xiaoling Liu ◽  
Zhaoshun Xin ◽  
Jiangmin Zhou ◽  
Peiran Yang

To investigate thermal failure of dynamic oil film in cylindrical roller bearings(CRBs), based on the temperature field of CRBs, non-Newtonian dynamic thermal elastohydrodynamic (TEHL) lubricating performance in cylindrical roller bearings was conducted. A single surface bump was coupled with longitudinal waviness on the roller surface, and a dynamic non-Newtonian finite line contact TEHL model was established considering the boundary temperature of the bearing assembly. Effects of the roller boundary temperature, the surface bump amplitude, the rotational speed, and the viscosity-pressure coefficient on thermal failure were analyzed. Comparison of lubricating performance between Newtonian and non-Newtonian fluid was made as well. Results show that, when the roller boundary temperature increases, the pressure and the oil temperature become larger, and the film thickness and frictional coefficient decrease obviously for roller to outer race contact. As the surface amplitude is large enough, or the rotational speed is low enough, phenomenon of partial contact between the roller and the outer ring may be generated due to high boundary temperature of solids. In addition, when the rotational speed is very low, the temperature of the roller surface reaches the first critical temperature of the adsorbed film, so thermal film failure may occur for roller to outer race lubrication.

1982 ◽  
Vol 104 (3) ◽  
pp. 311-320
Author(s):  
L. J. Nypan

Measurements of roller skewing of a 1.15 length to diameter ratio roller in 118 mm bore roller bearings of 0.18 and 0.21 mm (0.0073 and 0.0083 in.) clearance operating with a 4450 N (1000 lb) radial load at shaft speeds of 4000, 8000, and 12,000 rpm with outer race misalignment of 0, 0.5, and −0.5 deg are reported.


2015 ◽  
Vol 105 (05) ◽  
pp. 285-290
Author(s):  
C. Brecher ◽  
M. Fey ◽  
J. Falker

Das Floating-Roller-Ball (FRB)-Lager ist ein Konzept für Radiallager als Loslager für Hochgeschwindigkeits-Motorspindeln, das die Vorteile von Zylinderrollenlagern und angestellten Mehrpunktlagern in einer neuen Wälzkörpergeometrie kombiniert. Zur Auslegung des ersten Prototyps wurde mithilfe eines Berechnungstools das theoretische Betriebsverhalten untersucht. Die Berechnungsergebnisse liefern Randbedingungen als Grundlage zur experimentellen Untersuchung des Lagerkonzepts.   Floating roller ball bearings provide a new floating bearing system for high-speed motor spindles, combining the advantages of both cylindrical roller bearings and elastically mounted multi-contact point bearings in a new roller geometry. To design the first prototype, the operational behavior of the bearing system was analyzed theoretically by a new calculation tool. The results provide the basis for the experimental investigation of the bearing concept.


1976 ◽  
Vol 98 (1) ◽  
pp. 66-71 ◽  
Author(s):  
R. A. Hargreaves ◽  
G. R. Higginson

Experiments on cylindrical roller bearings of 50-mm bore lubricated by an air/oil mist show that friction torque and operating temperatures are much reduced by running at low lubricant supply rates.


2018 ◽  
Vol 3 (2) ◽  
pp. 947-960 ◽  
Author(s):  
Jonathan Keller ◽  
Yi Guo ◽  
Zhiwei Zhang ◽  
Doug Lucas

Abstract. In this paper, the planetary load-sharing behavior and fatigue life of different wind turbine gearboxes when subjected to rotor moments are examined. Two planetary bearing designs are compared – one design using cylindrical roller bearings with clearance and the other design using preloaded tapered roller bearings to support both the carrier and planet gears. Each design was developed and integrated into a 750 kW dynamometer tests, the loads on each planet bearing row were measured and compared to finite-element models. Bearing loads were not equally shared between the set of cylindrical roller bearings supporting the planets even in pure torque conditions, with one bearing supporting up to 46 % more load than expected. A significant improvement in planetary bearing load sharing was demonstrated in the gearbox with preloaded tapered roller bearings with maximum loads 20 % lower than the gearbox with cylindrical roller bearings. Bearing life was calculated with a representative duty cycle measured from field tests. The predicted fatigue life of the eight combined planet and carrier bearings for the gearbox with preloaded tapered roller bearings is 3.5 times greater than for the gearbox with cylindrical roller bearings. The influence of other factors, such as carrier and planet bearing clearance, gravity, and tangential pin position error, is also investigated. The combined effect of gravity and carrier bearing clearance was primarily responsible for unequal load sharing. Reducing carrier bearing clearance significantly improved load sharing, while reducing planet clearance did not. Normal tangential pin position error did not impact load sharing due to the floating sun design of this three-planet gearbox.


2009 ◽  
Vol 131 (5) ◽  
Author(s):  
K. Sunil Kumar ◽  
Rajiv Tiwari ◽  
P. V. V. N. Prasad

The long fatigue life is the one of the most important criterion for the design of rolling bearings, however, due to complex and diverse internal geometries, each type of rolling bearings require a different design formulation. To increase the life of cylindrical roller bearings, the profile (or the crowning) of the roller plays an important role. A flat profile of the rolling element results in the edge stress concentrations at roller ends. A circular crowning of roller eliminates the edge stress concentration at the lower and moderate loads only; however, it develops edge stress concentrations at heavy loads. The logarithmic profile of the roller results in no edge stress concentration at the low, medium, and heavy loads; distribution of contact stresses is also nearly uniform along the length of the roller. A design methodology for the optimum design of cylindrical roller bearings with the logarithmic profile has been outlined. A nonlinear constrained optimization problem has been formulated for the design of cylindrical roller bearings with logarithmic profiles and is optimized by using real-coded genetic algorithms. The change in roller profile has not been accounted for explicitly in the standard definition of the dynamic capacity; hence, for the present case directly the Lundberg–Palmgren life equation has been chosen as an objective function. Design variables include four bearing geometrical parameters and the two logarithmic profile generating parameters are considered. In addition to these, another five design constraint constants are also included, which indirectly affect the fatigue life of cylindrical roller bearings. The five design constraint constants have been given bounds based on the parametric studies through initial optimization runs. The effective length of the roller is taken corresponding to the standard roller diameter, which has standard discrete dimensions. Constraint violation study has been performed to have an assessment of the effectiveness of each of the constraints. A convergence study has been carried out to ensure the global optimum point in the design. A sensitivity analysis of various geometric design parameters has been performed using the Monte Carlo simulation technique, in order to see changes in the fatigue life of the bearing. Illustrations show that the multiplier of the logarithmic profile deviation parameter has more effect on the fatigue life as compared with other geometric parameters.


2013 ◽  
Vol 56 (5) ◽  
pp. 703-716 ◽  
Author(s):  
Ryan D. Evans ◽  
Todd A. Barr ◽  
Luc Houpert ◽  
Steven V. Boyd

2017 ◽  
Vol 69 (2) ◽  
pp. 225-233 ◽  
Author(s):  
Wenjing Zhang ◽  
Wei Chen ◽  
Zhe Liu

Purpose The aim of this study is to understand thermal effects and surface topography of roller bearings with misaligned load under combination of multifactors by an experimental method. Design/methodology/approach A series of orthogonal experiments would need to be planned and performed. A ranking of impact degree of factors on edge effect and eccentric load effect can be learned with multivariate analysis of variance by Statistical Product and Service Solutions software. Influence rules of each individual factor can also be obtained through more experiments. A roller surface phase diagram both before and after test can be observed with metallographic microscope. An axial profile data of roller can be measured by PGI 3D Profiler, then a roller generatrix contour can be achieved through filtering measured signal with empirical mode decomposition method. Findings Slip fraction has most impact on edge effect, whereas tilting angle plays a key role in eccentric load effect. For the case of low temperature, skidding damage does not occur. Inversely, because of the high pressure in partial elastohydrodynamic lubrication caused by roller tilt, running-in occurs and micro asperity flattening is observed on a rough surface. And, the larger the tilting angle, the more obvious the micro-flattening and the greater the reduction of roller surface roughness after the test. Originality/value A lot of theoretical studies on thermal effect of roller bearings surface morphology have been published. However, there are little on relevant experimental study, especially on thermal effect with an integration of sliding, tilting and unbalance loading.


Sign in / Sign up

Export Citation Format

Share Document